Improved Cognitive Vigilance Assessment after Artifact Reduction with Wavelet Independent Component Analysis.
dimensionality reduction
feature extraction
independent component analysis
noise
thresholds
vigilance assessment
wavelet transform
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
15 Apr 2022
15 Apr 2022
Historique:
received:
03
03
2022
revised:
10
04
2022
accepted:
11
04
2022
entrez:
23
4
2022
pubmed:
24
4
2022
medline:
27
4
2022
Statut:
epublish
Résumé
Vigilance level assessment is of prime importance to avoid life-threatening human error. Critical working environments such as air traffic control, driving, or military surveillance require the operator to be alert the whole time. The electroencephalogram (EEG) is a very common modality that can be used in assessing vigilance. Unfortunately, EEG signals are prone to artifacts due to eye movement, muscle contraction, and electrical noise. Mitigating these artifacts is important for an accurate vigilance level assessment. Independent Component Analysis (ICA) is an effective method and has been extensively used in the suppression of EEG artifacts. However, in vigilance assessment applications, it was found to suffer from leakage of the cerebral activity into artifacts. In this work, we show that the wavelet ICA (wICA) method provides an alternative for artifact reduction, leading to improved vigilance level assessment results. We conducted an experiment in nine human subjects to induce two vigilance states, alert and vigilance decrement, while performing a Stroop Color-Word Test for approximately 45 min. We then compared the performance of the ICA and wICA preprocessing methods using five classifiers. Our classification results showed that in terms of features extraction, the wICA method outperformed the existing ICA method. In the delta, theta, and alpha bands, we obtained a mean classification accuracy of 84.66% using the ICA method, whereas the mean accuracy using the wICA methodwas 96.9%. However, no significant improvement was observed in the beta band. In addition, we compared the topographical map to show the changes in power spectral density across the brain regions for the two vigilance states. The proposed method showed that the frontal and central regions were most sensitive to vigilance decrement. However, in this application, the proposed wICA shows a marginal improvement compared to the Fast-ICA.
Identifiants
pubmed: 35459033
pii: s22083051
doi: 10.3390/s22083051
pmc: PMC9033092
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
J Neurosci Methods. 2010 Sep 30;192(1):152-62
pubmed: 20654646
Int J Psychophysiol. 2010 Jun;76(3):169-73
pubmed: 20350573
Sleep. 2014 Jul 01;37(7):1257-67
pubmed: 24987165
Physiol Behav. 2008 Jan 28;93(1-2):369-78
pubmed: 17999934
Sensors (Basel). 2021 Jul 26;21(15):
pubmed: 34372280
Front Hum Neurosci. 2016 Jun 07;10:273
pubmed: 27375464
Eur J Neurosci. 2015 Mar;41(6):818-34
pubmed: 25546318
Psychophysiology. 2011 Feb;48(2):229-40
pubmed: 20636297
Conf Proc IEEE Eng Med Biol Soc. 2005;2005:4685-8
pubmed: 17281286
Psychophysiology. 2017 Mar;54(3):386-398
pubmed: 28026876
Sleep Med. 2013 Jun;14(6):542-8
pubmed: 23531374
Neurosci Lett. 2003 Apr 3;340(1):17-20
pubmed: 12648748
Front Neuroinform. 2011 Dec 23;5:33
pubmed: 22275896
Appl Ergon. 2014 Mar;45(2):354-62
pubmed: 23722006
Front Hum Neurosci. 2019 Nov 14;13:401
pubmed: 31803035
ScientificWorldJournal. 2014;2014:807620
pubmed: 24991647
Neuroimage. 2019 Oct 15;200:460-473
pubmed: 31233907
J Neural Eng. 2015 Aug;12(4):046020
pubmed: 26065874
Hum Factors. 2008 Jun;50(3):433-41
pubmed: 18689050
Sensors (Basel). 2013 May 13;13(5):6272-94
pubmed: 23669713
Front Neuroinform. 2015 Jun 18;9:16
pubmed: 26150785
IEEE Trans Biomed Eng. 2014 Jun;61(6):1634-41
pubmed: 24845273
Int J Psychophysiol. 2004 Jul;53(2):105-19
pubmed: 15210288
J Neurosci Methods. 2006 Dec 15;158(2):300-12
pubmed: 16828877
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:6201-4
pubmed: 17946748
J Neural Eng. 2017 Aug;14(4):046004
pubmed: 28497769
Aviat Space Environ Med. 2005 Sep;76(9):847-56
pubmed: 16173681
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3864-7
pubmed: 19163556
Sensors (Basel). 2017 Mar 01;17(3):
pubmed: 28257073
Sensors (Basel). 2019 Feb 26;19(5):
pubmed: 30813520
Trends Cogn Sci. 2002 Feb 1;6(2):59-64
pubmed: 15866182
Med Biol Eng Comput. 2006 May;44(5):371-82
pubmed: 16937179
Front Neuroinform. 2014 Mar 07;8:20
pubmed: 24639646
Comput Intell Neurosci. 2012;2012:412512
pubmed: 23097663
J Neurosci Methods. 2001 Jul 15;108(1):11-7
pubmed: 11459613
Brain Sci. 2019 Dec 09;9(12):
pubmed: 31835346
J Sleep Res. 2009 Dec;18(4):472-9
pubmed: 19021857
Neuroimage. 2007 Feb 15;34(4):1443-9
pubmed: 17188898
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:5140-5143
pubmed: 28269424
Brain Sci. 2019 Jul 26;9(8):
pubmed: 31357524
Clin Neurophysiol. 2007 Sep;118(9):1906-22
pubmed: 17652020
IEEE Trans Cybern. 2021 Mar;51(3):1542-1555
pubmed: 31545761
J Neurosci Methods. 2004 Mar 15;134(1):9-21
pubmed: 15102499