Combination effect of epsilon-poly-L-lysine and antibiotics against common bacterial pathogens.


Journal

The Journal of antibiotics
ISSN: 1881-1469
Titre abrégé: J Antibiot (Tokyo)
Pays: England
ID NLM: 0151115

Informations de publication

Date de publication:
06 2022
Historique:
received: 06 08 2021
accepted: 17 03 2022
revised: 08 02 2022
pubmed: 24 4 2022
medline: 11 5 2022
entrez: 23 4 2022
Statut: ppublish

Résumé

Epsilon-poly-L-lysine (EPL) is an antimicrobial peptide with low mammalian toxicity; thus, it is commonly used as food preservative. Here, the capacity of EPL to improve the efficacy of the antibiotics ampicillin (AMP), gentamycin (GEN), tetracycline (TCN), and methicillin (MET) against four bacterial pathogens, namely Pseudomonas aeruginosa PAO1, Klebsiella pneumoniae CG43, MET-sensitive Staphylococcus aureus ATCC 25923 (MSSA), and MET-resistant S. aureus ATCC 33591 (MRSA), was investigated. Some antibiotic-EPL combinations, i.e., AMP-EPL, GEN-EPL, and TCN-EPL, were particularly active against the pathogens through synergy, partial synergy, or additive effects. Additionally, MET-EPL displayed a partial synergistic effect against MRSA. GEN-EPL had the most powerful antimicrobial effect against MSSA: it eradicated the bacterium within an hour. Conversely, AMP-EPL and MET-EPL were the least potent combinations against MRSA, and TCN-EPL was least potent against K. pneumoniae; for these combinations, bactericidal activities occurred >10 h after initial treatments. All antibiotic-EPL treatments showed inhibitory activities against P. aeruginosa biofilm formation and enhanced preformed biofilm disruption in vitro. Similarly, the inhibition of biofilm formation on a porcine skin model was observed. Moreover, no significant cytotoxicity was detected for any antibiotic-EPL treatment in tests using Balb/3t3 fibroblasts. Given the rise in antibiotic-resistant bacteria, combining antibiotics with EPL may enhance antibiotic effectiveness, as shown in this study, while helping to avoid antimicrobial resistance.

Identifiants

pubmed: 35459856
doi: 10.1038/s41429-022-00523-9
pii: 10.1038/s41429-022-00523-9
doi:

Substances chimiques

Ampicillin 7C782967RD
Anti-Bacterial Agents 0
Gentamicins 0
Methicillin Q91FH1328A
Polylysine 25104-18-1

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

354-359

Informations de copyright

© 2022. The Author(s), under exclusive licence to the Japan Antibiotics Research Association.

Références

Tyers M, Wright GD. Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat Rev Microbiol. 2019;17:141–55.
doi: 10.1038/s41579-018-0141-x
Geitani R, Ayoub Moubareck C, Touqui L, Karam Sarkis D. Cationic antimicrobial peptides: alternatives and/or adjuvants to antibiotics active against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa. BMC Microbiol. 2019;19:1–12.
doi: 10.1186/s12866-019-1416-8
Grassi L, Maisetta G, Esin S, Batoni G. Combination strategies to enhance the efficacy of antimicrobial peptides against bacterial biofilms. Front Microbiol. 2017;8:2409.
doi: 10.3389/fmicb.2017.02409
Shukla SC, Singh A, Pandey A, Mishra A. Review on production and medical applications of ɛ-polylysine. Biochem Eng J. 2012;65:78–81.
doi: 10.1016/j.bej.2012.04.001
Yoshida T, Nagasawa T. ε-Poly-L-lysine: microbial production, biodegradation and application potential. Appl Microbiol Biotechnol. 2003;62:21–6.
doi: 10.1007/s00253-003-1312-9
Ning H-Q, Lin H, Wang J-X. Synergistic effects of endolysin Lysqdvp001 and ε-poly-lysine in controlling Vibrio parahaemolyticus and its biofilms. Int J Food Microbiol. 2021;343:109112.
doi: 10.1016/j.ijfoodmicro.2021.109112
Najjar MB, Kashtanov D, Chikindas M. ε‐Poly‐l‐lysine and nisin A act synergistically against Gram‐positive food‐borne pathogens Bacillus cereus and Listeria monocytogenes. Lett Appl Microbiol. 2007;45:13–8.
doi: 10.1111/j.1472-765X.2007.02157.x
Zhou C, Li P, Qi X, Sharif AR, Poon YF, Cao Y et al. A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-l-lysine. Biomaterials. 2011;32:2704–12.
doi: 10.1016/j.biomaterials.2010.12.040
Hyldgaard M, Mygind T, Vad BS, Stenvang M, Otzen DE, Meyer RL. The antimicrobial mechanism of action of epsilon-poly-l-lysine. Appl Environ Microbiol. 2014;80:7758–70.
doi: 10.1128/AEM.02204-14
Zahi MR, El Hattab M, Liang H, Yuan Q. Enhancing the antimicrobial activity of d-limonene nanoemulsion with the inclusion of ε-polylysine. Food Chem. 2017;221:18–23.
doi: 10.1016/j.foodchem.2016.10.037
Yoshida T, Nagasawa T.ε-Poly-L-lysine: microbial production, biodegradation and application potential.Appl Microbiol Biotechnol.2003;62:21–6.
doi: 10.1007/s00253-003-1312-9
Tan Z, Shi Y, Xing B, Hou Y, Cui J, Jia S. The antimicrobial effects and mechanism of ε-poly-lysine against Staphylococcus aureus. Bioresour Bioprocess. 2019;6:1–10.
doi: 10.1186/s40643-019-0246-8
Koebnik R, Locher KP, Van Gelder P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol. 2000;37:239–53.
doi: 10.1046/j.1365-2958.2000.01983.x
Berditsch M, Jäger T, Strempel N, Schwartz T, Overhage J, Ulrich AS. Synergistic effect of membrane-active peptides polymyxin B and gramicidin S on multidrug-resistant strains and biofilms of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2015;59:5288–96.
doi: 10.1128/AAC.00682-15
Chang Y, McLandsborough L, McClements DJ. Cationic antimicrobial (ε-polylysine)–anionic polysaccharide (pectin) interactions: influence of polymer charge on physical stability and antimicrobial efficacy. J Agric Food Chem. 2012;60:1837–44.
doi: 10.1021/jf204384s
Guzel Kaya G, Medaglia S, Candela-Noguera V, Tormo-Mas MÁ, Marcos MD, Aznar E et al. Antibacterial activity of linezolid against gram-negative bacteria: utilization of ε-poly-l-lysine capped silica xerogel as an activating carrier. Pharmaceutics. 2020;12:1126.
doi: 10.3390/pharmaceutics12111126
Shi C, Zhao X, Liu Z, Meng R, Chen X, Guo N. Antimicrobial, antioxidant, and antitumor activity of epsilon-poly-L-lysine and citral, alone or in combination. Food Nutr Res. 2016;60:31891.
doi: 10.3402/fnr.v60.31891
Standards, N.C.f.C.L. and Barry AL. Methods for determining bactericidal activity of antimicrobial agents: approved guideline. National Committee for Clinical Laboratory Standards Wayne, PA; 19. 1999.
Garty BZ, Offer I, Livni E, Danon YL. Erythema multiforme and hypersensivity myocarditis caused by ampicillin. Ann Pharmacother. 1994;28:730–1.
doi: 10.1177/106002809402800609
Guin J, Phillips D. Erythroderma from systemic contact dermatitis: a complication of systemic gentamicin in a patient with contact allergy to neomycin. Cutis. 1989;43:564–7.
pubmed: 2526007
Bjellerup M, Ljunggren B. Photohemolytic potency of tetracyclines. J Investig Dermatol. 1985;84:262–4.
doi: 10.1111/1523-1747.ep12265336
Yow MD, Taber LH, Barrett FF, Mintz AA, Blankinship GR, Clark GE et al. A ten-year assessment of methicillin-associated side effects. Pediatrics. 1976;58:329–34.
doi: 10.1542/peds.58.3.329
Wang R, Xu D, Liang L, Xu T, Liu W, Ouyang P et al. Enzymatically crosslinked epsilon-poly-L-lysine hydrogels with inherent antibacterial properties for wound infection prevention. RSC Adv. 2016;6:8620–7.
doi: 10.1039/C5RA15616E
Guo Z, Sui J, Ma M, Hu J, Sun Y, Yang L et al. pH-Responsive charge switchable PEGylated ε-poly-l-lysine polymeric nanoparticles-assisted combination therapy for improving breast cancer treatment. J Controlled Release. 2020;326:350–64.
doi: 10.1016/j.jconrel.2020.07.030
Palmer J, Flint S, Brooks J. Bacterial cell attachment, the beginning of a biofilm. J Ind Microbiol Biotechnol. 2007;34:577–88.
doi: 10.1007/s10295-007-0234-4
Davison WM, Pitts B, Stewart PS. Spatial and temporal patterns of biocide action against Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother. 2010;54:2920–7.
doi: 10.1128/AAC.01734-09
Martinez M, Gonçalves S, Felício MR, Maturana P, Santos NC, Semorile L et al. Synergistic and antibiofilm activity of the antimicrobial peptide P5 against carbapenem-resistant Pseudomonas aeruginosa. Biochimica Biophys Acta (BBA)—Biomembr. 2019;1861:1329–37.
doi: 10.1016/j.bbamem.2019.05.008
Shi D, Mi G, Wang M, Webster TJ. In vitro and ex vivo systems at the forefront of infection modeling and drug discovery. Biomaterials. 2019;198:228–49.
doi: 10.1016/j.biomaterials.2018.10.030

Auteurs

Sneha Sundaran (S)

Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan, ROC.

Li-Ching Kok (LC)

Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan, ROC.

Hwan-You Chang (HY)

Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan, ROC. hychang@life.nthu.edu.tw.

Articles similaires

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH