Guidelines for magnetic resonance imaging in pediatric head and neck pathologies: a multicentre international consensus paper.

Guidelines Head and neck images Magnetic resonance imaging Pediatric neuroradiology Standardized protocols

Journal

Neuroradiology
ISSN: 1432-1920
Titre abrégé: Neuroradiology
Pays: Germany
ID NLM: 1302751

Informations de publication

Date de publication:
Jun 2022
Historique:
received: 16 02 2022
accepted: 05 04 2022
pubmed: 24 4 2022
medline: 21 5 2022
entrez: 23 4 2022
Statut: ppublish

Résumé

The use of standardized imaging protocols is paramount in order to facilitate comparable, reproducible images and, consequently, to optimize patient care. Standardized MR protocols are lacking when studying head and neck pathologies in the pediatric population. We propose an international, multicenter consensus paper focused on providing the best combination of acquisition time/technical requirements and image quality. Distinct protocols for different regions of the head and neck and, in some cases, for specific pathologies or clinical indications are recommended. This white paper is endorsed by several international scientific societies and it is the result of discussion, in consensus, among experts in pediatric head and neck imaging.

Identifiants

pubmed: 35460348
doi: 10.1007/s00234-022-02950-9
pii: 10.1007/s00234-022-02950-9
doi:

Types de publication

Journal Article Multicenter Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

1081-1100

Subventions

Organisme : Medical Research Council
ID : MR/R002118/1
Pays : United Kingdom

Investigateurs

Alessandro Bozzao (A)
Jan Sedlacik (J)
Camilla Rossi Espagnet (CR)
Daniela Longo (D)
Alessia Carboni (A)
Lorenzo Ugga (L)
Stefania Picariello (S)
Giacomo Talenti (G)
Sniya V Sudahakar (SV)
Martina Di Stasi (M)
Ulrike Löbel (U)
Robert Nash (R)
Kaukab Rajput (K)
Olivia Carney (O)
Davide Farina (D)
Richard Hewitt (R)
Olga Slater (O)
Jessica Cooper (J)
Gennaro D'Anna (G)
Gul Moonis (G)
Andrea Rossi (A)
Domenico Tortora (D)
Cesar Augusto Alves (CA)
Asif Mazumder (A)
Faraan Khan (F)
Teresa Nunes (T)
Owen Arthurs (O)
Hisham Dahmoush (H)
Renato Cuocolo (R)
Pablo Caro-Dominguez (P)
Arastoo Vossough (A)
William T O'Brien (WT)
Asthik Biswas (A)
Catriona Duncan (C)
Lennyn Alban (L)

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Avula S, Peet A, Morana G et al (2021) European Society for Paediatric Oncology (SIOPE) MRI guidelines for imaging patients with central nervous system tumours. Childs Nerv Syst 37:2497–2508. https://doi.org/10.1007/s00381-021-05199-4
doi: 10.1007/s00381-021-05199-4 pubmed: 33973057
Saunders DE, Thompson C, Gunny R et al (2007) Magnetic resonance imaging protocols for paediatric neuroradiology. Pediatr Radiol 37:789–797. https://doi.org/10.1007/s00247-007-0462-9
doi: 10.1007/s00247-007-0462-9 pubmed: 17487479 pmcid: 1950216
Vargas M-I, Becker M, Garibotto V et al (2013) Approaches for the optimization of MR protocols in clinical hybrid PET/MRI studies. MAGMA 26:57–69. https://doi.org/10.1007/s10334-012-0340-9
doi: 10.1007/s10334-012-0340-9 pubmed: 23008016
Widmann G, Henninger B, Kremser C, Jaschke W (2017) MRI sequences in head & neck radiology - state of the art. Rofo 189:413–422. https://doi.org/10.1055/s-0043-103280
doi: 10.1055/s-0043-103280 pubmed: 28449168
Vachha BA, Robson CD (2015) Imaging of pediatric orbital diseases. Neuroimaging Clin N Am 25:477–501. https://doi.org/10.1016/j.nic.2015.05.009
doi: 10.1016/j.nic.2015.05.009 pubmed: 26208421
Galluzzi P, Hadjistilianou T, Cerase A et al (2009) Is CT still useful in the study protocol of retinoblastoma? AJNR Am J Neuroradiol 30:1760–1765. https://doi.org/10.3174/ajnr.A1716
doi: 10.3174/ajnr.A1716 pubmed: 19617447 pmcid: 7051500
Rodjan F, de Graaf P, van der Valk P et al (2015) Detection of calcifications in retinoblastoma using gradient-echo MR imaging sequences: comparative study between in vivo MR imaging and ex vivo high-resolution CT. AJNR Am J Neuroradiol 36:355–360. https://doi.org/10.3174/ajnr.A4163
doi: 10.3174/ajnr.A4163 pubmed: 25523593 pmcid: 7965654
Bhatia A, Mirsky DM, Mankad K et al (2021) Neuroimaging of retinal hemorrhage utilizing adjunct orbital susceptibility-weighted imaging. Pediatr Radiol 51:991–996. https://doi.org/10.1007/s00247-020-04897-6
doi: 10.1007/s00247-020-04897-6 pubmed: 33710408
Wells RG, Sty JR, Gonnering RS (1989) Imaging of the pediatric eye and orbit. Radiographics 9:1023–1044. https://doi.org/10.1148/radiographics.9.6.2685932
doi: 10.1148/radiographics.9.6.2685932 pubmed: 2685932
Nagesh CP, Rao R, Hiremath SB, Honavar SG (2021) Magnetic resonance imaging of the orbit, Part 1: basic principles and radiological approach. Indian J Ophthalmol 69:2574–2584. https://doi.org/10.4103/ijo.IJO_3141_20
doi: 10.4103/ijo.IJO_3141_20 pubmed: 34571597 pmcid: 8597479
Chen JS, Mukherjee P, Dillon WP, Wintermark M (2006) Restricted diffusion in bilateral optic nerves and retinas as an indicator of venous ischemia caused by cavernous sinus thrombophlebitis. AJNR Am J Neuroradiol 27:1815–1816
pubmed: 17032847 pmcid: 7977887
Feeney C, Lingam RK, Lee V et al (2020) Non-EPI-DWI for detection, disease monitoring, and clinical decision-making in thyroid eye disease. AJNR Am J Neuroradiol 41:1466–1472. https://doi.org/10.3174/ajnr.A6664
doi: 10.3174/ajnr.A6664 pubmed: 32796099 pmcid: 7658861
Zuccoli G, Panigrahy A, Haldipur A et al (2013) Susceptibility weighted imaging depicts retinal hemorrhages in abusive head trauma. Neuroradiology 55:889–893. https://doi.org/10.1007/s00234-013-1180-7
doi: 10.1007/s00234-013-1180-7 pubmed: 23568702 pmcid: 3713254
Steinklein JM, Shatzkes DR (2018) Imaging of vascular lesions of the head and neck. Otolaryngol Clin North Am 51:55–76. https://doi.org/10.1016/j.otc.2017.09.007
doi: 10.1016/j.otc.2017.09.007 pubmed: 29217068
Krishnamurthy R, Muthupillai R, Chung T (2009) Pediatric body MR angiography. Magn Reson Imaging Clin N Am 17:133–144. https://doi.org/10.1016/j.mric.2008.12.004
doi: 10.1016/j.mric.2008.12.004 pubmed: 19364604
Sepahdari AR, Aakalu VK, Kapur R et al (2009) MRI of orbital cellulitis and orbital abscess: the role of diffusion-weighted imaging. AJR Am J Roentgenol 193:W244–W250. https://doi.org/10.2214/AJR.08.1838
doi: 10.2214/AJR.08.1838 pubmed: 19696266
De B, Kinnaman MD, Wexler LH et al (2018) Central nervous system relapse of rhabdomyosarcoma. Pediatr Blood Cancer. https://doi.org/10.1002/pbc.26710
doi: 10.1002/pbc.26710 pubmed: 28696016
Aerts I, Lumbroso-Le Rouic L, Gauthier-Villars M et al (2006) Retinoblastoma. Orphanet J Rare Dis 1:31. https://doi.org/10.1186/1750-1172-1-31
doi: 10.1186/1750-1172-1-31 pubmed: 16934146 pmcid: 1586012
de Graaf P, Göricke S, Rodjan F et al (2012) Guidelines for imaging retinoblastoma: imaging principles and MRI standardization. Pediatr Radiol 42:2–14. https://doi.org/10.1007/s00247-011-2201-5
doi: 10.1007/s00247-011-2201-5 pubmed: 21850471
de Jong MC, Kors WA, de Graaf P et al (2014) Trilateral retinoblastoma: a systematic review and meta-analysis. Lancet Oncol 15:1157–1167. https://doi.org/10.1016/S1470-2045(14)70336-5
doi: 10.1016/S1470-2045(14)70336-5 pubmed: 25126964
de Jong MC, Kors WA, de Graaf P et al (2015) The incidence of trilateral retinoblastoma: a systematic review and meta-analysis. Am J Ophthalmol 160:1116-1126.e5. https://doi.org/10.1016/j.ajo.2015.09.009
doi: 10.1016/j.ajo.2015.09.009 pubmed: 26374932
de Jong MC, Kors WA, Moll AC et al (2020) Screening for pineal trilateral retinoblastoma revisited: a meta-analysis. Ophthalmology 127:601–607. https://doi.org/10.1016/j.ophtha.2019.10.040
doi: 10.1016/j.ophtha.2019.10.040 pubmed: 32061409
Galluzzi P, de Jong MC, Sirin S et al (2016) MRI-based assessment of the pineal gland in a large population of children aged 0–5 years and comparison with pineoblastoma: part I, the solid gland. Neuroradiology 58:705–712. https://doi.org/10.1007/s00234-016-1684-z
doi: 10.1007/s00234-016-1684-z pubmed: 27130616 pmcid: 4958126
Sirin S, de Jong MC, Galluzzi P et al (2016) MRI-based assessment of the pineal gland in a large population of children aged 0–5 years and comparison with pineoblastoma: part II, the cystic gland. Neuroradiology 58:713–721. https://doi.org/10.1007/s00234-016-1683-0
doi: 10.1007/s00234-016-1683-0 pubmed: 27130617 pmcid: 4958131
Chung EM, Specht CS, Schroeder JW (2007) From the archives of the AFIP: pediatric orbit tumors and tumorlike lesions: neuroepithelial lesions of the ocular globe and optic nerve. Radiographics 27:1159–1186. https://doi.org/10.1148/rg.274075014
doi: 10.1148/rg.274075014 pubmed: 17620473
Jansen RW, de Bloeme CM, Brisse HJ et al (2020) MR imaging features to differentiate retinoblastoma from coats’ disease and persistent fetal vasculature. Cancers (Basel). https://doi.org/10.3390/cancers12123592
doi: 10.3390/cancers12123592
Brisse HJ, European Retinoblastoma Imaging Collaboration (2010) Retinoblastoma Imaging. Ophthalmology 117:1051-1051.e1. https://doi.org/10.1016/j.ophtha.2009.12.022
doi: 10.1016/j.ophtha.2009.12.022 pubmed: 20438974
Brisse HJ, de Graaf P, Galluzzi P et al (2015) Assessment of early-stage optic nerve invasion in retinoblastoma using high-resolution 1.5 Tesla MRI with surface coils: a multicentre, prospective accuracy study with histopathological correlation. Eur Radiol 25:1443–1452. https://doi.org/10.1007/s00330-014-3514-1
doi: 10.1007/s00330-014-3514-1 pubmed: 25433413
Sirin S, Schlamann M, Metz KA et al (2013) Diagnostic image quality of gadolinium-enhanced T1-weighted MRI with and without fat saturation in children with retinoblastoma. Pediatr Radiol 43:716–724. https://doi.org/10.1007/s00247-012-2576-y
doi: 10.1007/s00247-012-2576-y pubmed: 23314985
Quirk B, Connor S (2020) Skull base imaging, anatomy, pathology and protocols. Pract Neurol 20:39–49. https://doi.org/10.1136/practneurol-2019-002383
doi: 10.1136/practneurol-2019-002383 pubmed: 31649103
Hudgins PA, Baugnon KL (2018) Head and neck: skull base imaging. Neurosurgery 82:255–267. https://doi.org/10.1093/neuros/nyx492
doi: 10.1093/neuros/nyx492 pubmed: 29040722
Muccio CF, Caranci F, D’Arco F et al (2014) Magnetic resonance features of pyogenic brain abscesses and differential diagnosis using morphological and functional imaging studies: a pictorial essay. J Neuroradiol 41:153–167. https://doi.org/10.1016/j.neurad.2014.05.004
doi: 10.1016/j.neurad.2014.05.004 pubmed: 24957685
Severino M, Liyanage S, Novelli V et al (2012) Skull base osteomyelitis and potential cerebrovascular complications in children. Pediatr Radiol 42:867–874. https://doi.org/10.1007/s00247-011-2340-8
doi: 10.1007/s00247-011-2340-8 pubmed: 22426472
Hoch BL, Nielsen GP, Liebsch NJ, Rosenberg AE (2006) Base of skull chordomas in children and adolescents: a clinicopathologic study of 73 cases. Am J Surg Pathol 30:811–818. https://doi.org/10.1097/01.pas.0000209828.39477.ab
doi: 10.1097/01.pas.0000209828.39477.ab pubmed: 16819322
Golden L, Pendharkar A, Fischbein N (2018) Imaging cranial base chordoma and chondrosarcoma. Chordomas and chondrosarcomas of the skull base and spine. Elsevier, pp 67–78
doi: 10.1016/B978-0-12-804257-1.00007-4
Talenti G, Picariello S, Robson C et al (2021) Magnetic resonance features and cranial nerve involvement in pediatric head and neck rhabdomyosarcomas. Neuroradiology 63:1925–1934. https://doi.org/10.1007/s00234-021-02765-0
doi: 10.1007/s00234-021-02765-0 pubmed: 34304299
Flors L, Leiva-Salinas C, Maged IM et al (2011) MR imaging of soft-tissue vascular malformations: diagnosis, classification, and therapy follow-up. Radiographics 31:1321–1340. https://doi.org/10.1148/rg.315105213
doi: 10.1148/rg.315105213 pubmed: 21918047
Mota EB, Penna CRR, Marchiori E (2017) Metastatic dissemination of a neuroblastoma. J Pediatr 189:232-232.e1. https://doi.org/10.1016/j.jpeds.2017.05.069
doi: 10.1016/j.jpeds.2017.05.069 pubmed: 28651799
Purnell CA, Skladman R, Alden TD et al (2019) Nasal dermoid cysts with intracranial extension: avoiding coronal incision through midline exposure and nasal bone osteotomy. J Neurosurg Pediatr. https://doi.org/10.3171/2019.9.PEDS19132
doi: 10.3171/2019.9.PEDS19132 pubmed: 31812133
Zaveri J, La Q, Yarmish G, Neuman J (2014) More than just Langerhans cell histiocytosis: a radiologic review of histiocytic disorders. Radiographics 34:2008–2024. https://doi.org/10.1148/rg.347130132
doi: 10.1148/rg.347130132 pubmed: 25384298
Weerakkody Y, Singh G (2005) Langerhans cell histiocytosis (skeletal manifestations). In: Radiopaedia.org. Radiopaedia.org
Chen H-C, Shen W-C, Chou D-Y, Chiang I-P (2002) Langerhans cell histiocytosis of the skull complicated with an epidural hematoma. AJNR Am J Neuroradiol 23:493–495
pubmed: 11901027 pmcid: 7975290
McClain KL, Picarsic J, Chakraborty R et al (2018) CNS Langerhans cell histiocytosis: common hematopoietic origin for LCH-associated neurodegeneration and mass lesions. Cancer 124:2607–2620. https://doi.org/10.1002/cncr.31348
doi: 10.1002/cncr.31348 pubmed: 29624648
Poe LB, Dubowy RL, Hochhauser L et al (1994) Demyelinating and gliotic cerebellar lesions in Langerhans cell histiocytosis. AJNR Am J Neuroradiol 15:1921–1928
pubmed: 7863943 pmcid: 8334273
Schäfer JF, Granata C, von Kalle T et al (2020) Whole-body magnetic resonance imaging in pediatric oncology - recommendations by the Oncology Task Force of the ESPR. Pediatr Radiol 50:1162–1174. https://doi.org/10.1007/s00247-020-04683-4
doi: 10.1007/s00247-020-04683-4 pubmed: 32468287 pmcid: 7329776
Godano E, Morana G, Di Iorgi N et al (2018) Role of MRI T2-DRIVE in the assessment of pituitary stalk abnormalities without gadolinium in pituitary diseases. Eur J Endocrinol 178:613–622. https://doi.org/10.1530/EJE-18-0094
doi: 10.1530/EJE-18-0094 pubmed: 29650689
Cerbone M, Visser J, Bulwer C et al (2021) Management of children and young people with idiopathic pituitary stalk thickening, central diabetes insipidus, or both: a national clinical practice consensus guideline. Lancet Child Adolesc Health 5:662–676. https://doi.org/10.1016/S2352-4642(21)00088-2
doi: 10.1016/S2352-4642(21)00088-2 pubmed: 34214482
Meuwly J-Y, Lepori D, Theumann N et al (2005) Multimodality imaging evaluation of the pediatric neck: techniques and spectrum of findings. Radiographics 25:931–948. https://doi.org/10.1148/rg.254045142
doi: 10.1148/rg.254045142 pubmed: 16009816
Chiesa-Estomba CM, Ravanelli M, Farina D et al (2020) Imaging checklist for preoperative evaluation of laryngeal tumors to be treated by transoral microsurgery: guidelines from the European Laryngological Society. Eur Arch Otorhinolaryngol 277:1707–1714. https://doi.org/10.1007/s00405-020-05869-0
doi: 10.1007/s00405-020-05869-0 pubmed: 32107616
Elders BBLJ, Hermelijn SM, Tiddens HAWM et al (2019) Magnetic resonance imaging of the larynx in the pediatric population: a systematic review. Pediatr Pulmonol 54:478–486. https://doi.org/10.1002/ppul.24250
doi: 10.1002/ppul.24250 pubmed: 30680950 pmcid: 6590591
Maroldi R, Ravanelli M, Farina D (2014) Magnetic resonance for laryngeal cancer. Curr Opin Otolaryngol Head Neck Surg 22:131–139. https://doi.org/10.1097/MOO.0000000000000036
doi: 10.1097/MOO.0000000000000036 pubmed: 24614061
Ravanelli M, Farina D, Rizzardi P et al (2013) MR with surface coils in the follow-up after endoscopic laser resection for glottic squamous cell carcinoma: feasibility and diagnostic accuracy. Neuroradiology 55:225–232. https://doi.org/10.1007/s00234-012-1128-3
doi: 10.1007/s00234-012-1128-3 pubmed: 23262560
Avey G (2020) Technical improvements in head and neck MR imaging: at the cutting edge. Neuroimaging Clin N Am 30:295–309. https://doi.org/10.1016/j.nic.2020.04.002
doi: 10.1016/j.nic.2020.04.002 pubmed: 32600632
Verbist BM (2012) Imaging of sensorineural hearing loss: a pattern-based approach to diseases of the inner ear and cerebellopontine angle. Insights Imaging 3:139–153. https://doi.org/10.1007/s13244-011-0134-z
doi: 10.1007/s13244-011-0134-z pubmed: 22696040
Casselman JW, Offeciers EF, De Foer B et al (2001) CT and MR imaging of congential abnormalities of the inner ear and internal auditory canal. Eur J Radiol 40:94–104. https://doi.org/10.1016/s0720-048x(01)00377-1
doi: 10.1016/s0720-048x(01)00377-1 pubmed: 11704356
Burd C, Pai I, Connor S (2020) Imaging anatomy of the retrotympanum: variants and their surgical implications. Br J Radiol 93:20190677. https://doi.org/10.1259/bjr.20190677
doi: 10.1259/bjr.20190677 pubmed: 31593485 pmcid: 6948074
Joshi VM, Navlekar SK, Kishore GR et al (2012) CT and MR imaging of the inner ear and brain in children with congenital sensorineural hearing loss. Radiographics 32:683–698. https://doi.org/10.1148/rg.323115073
doi: 10.1148/rg.323115073 pubmed: 22582354
Quirk B, Youssef A, Ganau M, D’Arco F (2019) Radiological diagnosis of the inner ear malformations in children with sensorineural hearing loss. BJR Open 1:20180050. https://doi.org/10.1259/bjro.20180050
doi: 10.1259/bjro.20180050 pubmed: 33178934 pmcid: 7592472
Talenti G, Manara R, Brotto D, D’Arco F (2018) High-resolution 3 T magnetic resonance findings in cochlear hypoplasias and incomplete partition anomalies: a pictorial essay. Br J Radiol 91:20180120. https://doi.org/10.1259/bjr.20180120
doi: 10.1259/bjr.20180120 pubmed: 29688748
Finsterer J, Scorza FA, Fiorini AC, Scorza CA (2020) MEGDEL Syndrome. Pediatr Neurol 110:25–29. https://doi.org/10.1016/j.pediatrneurol.2020.03.009
doi: 10.1016/j.pediatrneurol.2020.03.009 pubmed: 32684373
Campion T, Taranath A, Pinelli L et al (2019) Imaging of temporal bone inflammations in children: a pictorial review. Neuroradiology 61:959–970. https://doi.org/10.1007/s00234-019-02258-1
doi: 10.1007/s00234-019-02258-1 pubmed: 31321462
Casselman JW, Kuhweide R, Deimling M et al (1993) Constructive interference in steady state-3DFT MR imaging of the inner ear and cerebellopontine angle. AJNR Am J Neuroradiol 14:47–57
pubmed: 8427111 pmcid: 8334438
Schmalbrock P, Brogan MA, Chakeres DW et al (1993) Optimization of submillimeter-resolution MR imaging methods for the inner ear. J Magn Reson Imaging 3:451–459. https://doi.org/10.1002/jmri.1880030304
doi: 10.1002/jmri.1880030304 pubmed: 8324303
Benson JC, Carlson ML, Lane JI (2020) MRI of the internal auditory canal, labyrinth, and middle ear: how we do it. Radiology 297:252–265. https://doi.org/10.1148/radiol.2020201767
doi: 10.1148/radiol.2020201767 pubmed: 32960730
Schwartz KM, Lane JI, Bolster BD, Neff BA (2011) The utility of diffusion-weighted imaging for cholesteatoma evaluation. AJNR Am J Neuroradiol 32:430–436. https://doi.org/10.3174/ajnr.A2129
doi: 10.3174/ajnr.A2129 pubmed: 20488909 pmcid: 8013107
Dudau C, Draper A, Gkagkanasiou M et al (2019) Cholesteatoma: multishot echo-planar vs non echo-planar diffusion-weighted MRI for the prediction of middle ear and mastoid cholesteatoma. BJR Open 1:20180015. https://doi.org/10.1259/bjro.20180015
doi: 10.1259/bjro.20180015 pubmed: 33178911 pmcid: 7592409
De Foer B, Vercruysse J-P, Bernaerts A et al (2007) The value of single-shot turbo spin-echo diffusion-weighted MR imaging in the detection of middle ear cholesteatoma. Neuroradiology 49:841–848. https://doi.org/10.1007/s00234-007-0268-3
doi: 10.1007/s00234-007-0268-3 pubmed: 17768611
Wiesmueller M, Wuest W, May MS et al (2021) Comparison of readout-segmented echo-planar imaging and single-shot TSE DWI for cholesteatoma diagnostics. AJNR Am J Neuroradiol 42:1305–1312. https://doi.org/10.3174/ajnr.A7112
doi: 10.3174/ajnr.A7112 pubmed: 33926901
Lingam RK, Nash R, Majithia A et al (2016) Non-echoplanar diffusion weighted imaging in the detection of post-operative middle ear cholesteatoma: navigating beyond the pitfalls to find the pearl. Insights Imaging 7:669–678. https://doi.org/10.1007/s13244-016-0516-3
doi: 10.1007/s13244-016-0516-3 pubmed: 27558789 pmcid: 5028345
Lingam RK, Bassett P (2017) A meta-analysis on the diagnostic performance of non-echoplanar diffusion-weighted imaging in detecting middle ear cholesteatoma: 10 years on. Otol Neurotol 38:521–528. https://doi.org/10.1097/MAO.0000000000001353
doi: 10.1097/MAO.0000000000001353 pubmed: 28195998
Nash R, Wong PY, Kalan A et al (2015) Comparing diffusion weighted MRI in the detection of post-operative middle ear cholesteatoma in children and adults. Int J Pediatr Otorhinolaryngol 79:2281–2285. https://doi.org/10.1016/j.ijporl.2015.10.025
doi: 10.1016/j.ijporl.2015.10.025 pubmed: 26547234
De Foer B, Vercruysse J-P, Bernaerts A et al (2010) Middle ear cholesteatoma: non-echo-planar diffusion-weighted MR imaging versus delayed gadolinium-enhanced T1-weighted MR imaging–value in detection. Radiology 255:866–872. https://doi.org/10.1148/radiol.10091140
doi: 10.1148/radiol.10091140 pubmed: 20501723
De Foer B, Vercruysse JP, Spaepen M et al (2010) Diffusion-weighted magnetic resonance imaging of the temporal bone. Neuroradiology 52:785–807. https://doi.org/10.1007/s00234-010-0742-1
doi: 10.1007/s00234-010-0742-1 pubmed: 20631999
Kanona H, Stephenson K, D’Arco F et al (2018) Computed tomography versus magnetic resonance imaging in paediatric cochlear implant assessment: a pilot study and our experience at Great Ormond Street Hospital. J Laryngol Otol 132:529–533. https://doi.org/10.1017/S0022215118000440
doi: 10.1017/S0022215118000440 pubmed: 30019664
D’Arco F, Youssef A, Ioannidou E et al (2020) Temporal bone and intracranial abnormalities in syndromic causes of hearing loss: an updated guide. Eur J Radiol 123:108803. https://doi.org/10.1016/j.ejrad.2019.108803
doi: 10.1016/j.ejrad.2019.108803 pubmed: 31891841
Connor SEJ, Borri M, Pai I, Barnsley H (2021) “Black Bone” magnetic resonance imaging as a novel technique to aid the pre-operative planning of posterior tympanotomy for cochlear implantation. Cochlear Implants Int 22:35–41. https://doi.org/10.1080/14670100.2020.1823126
doi: 10.1080/14670100.2020.1823126 pubmed: 33028179
Yuhasz M, Hoch MJ, Hagiwara M et al (2018) Accelerated internal auditory canal screening magnetic resonance imaging protocol with compressed sensing 3-dimensional T2-weighted sequence. Invest Radiol 53:742–747. https://doi.org/10.1097/RLI.0000000000000499
doi: 10.1097/RLI.0000000000000499 pubmed: 30020139 pmcid: 6317869
Srinivasan R, So CW, Amin N et al (2019) A review of the safety of MRI in cochlear implant patients with retained magnets. Clin Radiol 74:972.e9-972.e16. https://doi.org/10.1016/j.crad.2019.06.011
doi: 10.1016/j.crad.2019.06.011
Lu W, Pauly KB, Gold GE et al (2009) SEMAC: slice encoding for metal artifact correction in MRI. Magn Reson Med 62:66–76. https://doi.org/10.1002/mrm.21967
doi: 10.1002/mrm.21967 pubmed: 19267347 pmcid: 2837371
Amin N, Pai I, Touska P, Connor SEJ (2021) Utilization of SEMAC-VAT MRI for improved visualization of posterior fossa structures in patients with cochlear implants. Otol Neurotol 42:e451–e458. https://doi.org/10.1097/MAO.0000000000003016
doi: 10.1097/MAO.0000000000003016 pubmed: 33534384
Sharma D, Sharma N, Sharma V (2019) Sinonasal cancers: diagnosis and management. In: Wang T-C (ed) Challenging issues on paranasal sinuses. IntechOpen
Sen S, Chandra A, Mukhopadhyay S, Ghosh P (2015) Imaging approach to sinonasal neoplasms. Neuroimaging Clin N Am 25:577–593. https://doi.org/10.1016/j.nic.2015.07.005
doi: 10.1016/j.nic.2015.07.005 pubmed: 26476381
Kushchayeva YS, Kushchayev SV, Glushko TY et al (2018) Fibrous dysplasia for radiologists: beyond ground glass bone matrix. Insights Imaging 9:1035–1056. https://doi.org/10.1007/s13244-018-0666-6
doi: 10.1007/s13244-018-0666-6 pubmed: 30484079 pmcid: 6269335
O’Brien WT, Hamelin S, Weitzel EK (2016) The preoperative sinus CT: avoiding a “CLOSE” call with surgical complications. Radiology 281:10–21. https://doi.org/10.1148/radiol.2016152230
doi: 10.1148/radiol.2016152230 pubmed: 27643765
Mossa-Basha M, Blitz AM (2013) Imaging of the paranasal sinuses. Semin Roentgenol 48:14–34. https://doi.org/10.1053/j.ro.2012.09.006
doi: 10.1053/j.ro.2012.09.006 pubmed: 23158048
Som PM, Curtin HD (1994) Inflammatory lesions and tumors of the nasal cavities and paranasal sinuses with skull base involvement. Neuroimaging Clin N Am 4:499–513
pubmed: 7952952
Loevner LA, Sonners AI (2002) Imaging of neoplasms of the paranasal sinuses. Magn Reson Imaging Clin N Am 10:467–493. https://doi.org/10.1016/s1064-9689(02)00006-5
doi: 10.1016/s1064-9689(02)00006-5 pubmed: 12530230
Madani G, Beale TJ, Lund VJ (2009) Imaging of sinonasal tumors. Semin Ultrasound CT MR 30:25–38. https://doi.org/10.1053/j.sult.2008.10.013
doi: 10.1053/j.sult.2008.10.013 pubmed: 19388236
Eisen MD, Yousem DM, Montone KT et al (1996) Use of preoperative MR to predict dural, perineural, and venous sinus invasion of skull base tumors. AJNR Am J Neuroradiol 17:1937–1945
pubmed: 8933883 pmcid: 8337544
Farina D, Borghesi A, Botturi E et al (2010) Treatment monitoring of paranasal sinus tumors by magnetic resonance imaging. Cancer Imaging 10:183–193. https://doi.org/10.1102/1470-7330.2010.0025
doi: 10.1102/1470-7330.2010.0025 pubmed: 20713318 pmcid: 2943677
Maroldi R, Ravanelli M, Farina D et al (2015) Post-treatment evaluation of paranasal sinuses after treatment of sinonasal neoplasms. Neuroimaging Clin N Am 25:667–685. https://doi.org/10.1016/j.nic.2015.07.009
doi: 10.1016/j.nic.2015.07.009 pubmed: 26476385
Ho M-L (2021) Advanced pediatric neuroimaging: “better, stronger, faster.” Magn Reson Imaging Clin N Am 29:xvii–xviii. https://doi.org/10.1016/j.mric.2021.07.001
doi: 10.1016/j.mric.2021.07.001 pubmed: 34717854
Kirsch CF, Ho M-L (2021) Advanced magnetic resonance imaging of the skull base. Semin Ultrasound CT MR 42:229–252. https://doi.org/10.1053/j.sult.2021.04.006
doi: 10.1053/j.sult.2021.04.006 pubmed: 34147160
Lu A, Gorny KR, Ho ML (2019) Zero TE MRI for craniofacial bone imaging. AJNR Am J Neuroradiol 40:1562–1566. https://doi.org/10.3174/ajnr.A6175
doi: 10.3174/ajnr.A6175 pubmed: 31467238 pmcid: 7048454
Kobayashi N, Bambach S, Ho M-L (2021) Ultrashort echo-time MR imaging of the pediatric head and neck. Magn Reson Imaging Clin N Am 29:583–593. https://doi.org/10.1016/j.mric.2021.06.008
doi: 10.1016/j.mric.2021.06.008 pubmed: 34717846
Nanjappa M, Kolipaka A (2021) Magnetic resonance elastography of the brain. Magn Reson Imaging Clin N Am 29:617–630. https://doi.org/10.1016/j.mric.2021.06.011
doi: 10.1016/j.mric.2021.06.011 pubmed: 34717849
Yeung DKW, Bhatia KS, Lee YYP et al (2013) MR elastography of the head and neck: driver design and initial results. Magn Reson Imaging 31:624–629. https://doi.org/10.1016/j.mri.2012.09.008
doi: 10.1016/j.mri.2012.09.008 pubmed: 23164497
Deelchand DK, Ho M-L, Nestrasil I (2021) Ultra-high-field imaging of the pediatric brain and spinal cord. Magn Reson Imaging Clin N Am 29:643–653. https://doi.org/10.1016/j.mric.2021.06.013
doi: 10.1016/j.mric.2021.06.013 pubmed: 34717851
van Egmond SL, Visser F, Pameijer FA, Grolman W (2014) Ex vivo and in vivo imaging of the inner ear at 7 Tesla MRI. Otol Neurotol 35:725–729. https://doi.org/10.1097/MAO.0000000000000276
doi: 10.1097/MAO.0000000000000276 pubmed: 24557032
Prabhu SP (2021) 3D modeling and advanced visualization of the pediatric brain, neck, and spine. Magn Reson Imaging Clin N Am 29:655–666. https://doi.org/10.1016/j.mric.2021.06.014
doi: 10.1016/j.mric.2021.06.014 pubmed: 34717852
Eley KA, Rossi-Espagnet MC, Schievano S et al (2021) Multiparametric imaging for presurgical planning of craniopagus twins: the experience of two tertiary pediatric hospitals with six sets of twins. Radiology 298:18–27. https://doi.org/10.1148/radiol.2020202216
doi: 10.1148/radiol.2020202216 pubmed: 33141005
Mamlouk MD, Hess CP (2016) Arterial spin-labeled perfusion for vascular anomalies in the pediatric head and neck. Clin Imaging 40:1040–1046. https://doi.org/10.1016/j.clinimag.2016.06.009
doi: 10.1016/j.clinimag.2016.06.009 pubmed: 27372212
Mossa-Basha M, Zhu C, Wu L (2021) Vessel wall MR imaging in the pediatric head and neck. Magn Reson Imaging Clin N Am 29:595–604. https://doi.org/10.1016/j.mric.2021.06.009
doi: 10.1016/j.mric.2021.06.009 pubmed: 34717847
Fujima N, Carlota Andreu-Arasa V, Barest GD et al (2020) Magnetic resonance spectroscopy of the head and neck: principles, applications, and challenges. Neuroimaging Clin N Am 30:283–293. https://doi.org/10.1016/j.nic.2020.04.006
doi: 10.1016/j.nic.2020.04.006 pubmed: 32600631
Jones KM, Pollard AC, Pagel MD (2018) Clinical applications of chemical exchange saturation transfer (CEST) MRI. J Magn Reson Imaging 47:11–27. https://doi.org/10.1002/jmri.25838
doi: 10.1002/jmri.25838 pubmed: 28792646
Pareek A, Muehe AM, Theruvath AJ et al (2017) Whole-body PET/MRI of pediatric patients: the details that matter. J Vis Exp. https://doi.org/10.3791/57128
doi: 10.3791/57128 pubmed: 29286486 pmcid: 5755621
Sepehrizadeh T, Jong I, DeVeer M, Malhotra A (2021) PET/MRI in paediatric disease. Eur J Radiol 144:109987. https://doi.org/10.1016/j.ejrad.2021.109987
doi: 10.1016/j.ejrad.2021.109987 pubmed: 34649143

Auteurs

Felice D'Arco (F)

Radiology Department, Great Ormond Street Hospital for Children, London, UK.
Radiology Department, Guy's and St Thomas' NHS Foundation Trust, London, UK.

Livja Mertiri (L)

Radiology Department, Great Ormond Street Hospital for Children, London, UK. livja.mertiri16@gmail.com.
Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy. livja.mertiri16@gmail.com.

Pim de Graaf (P)

Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Bert De Foer (B)

Radiology Department, GZA Hospitals, Antwerp, Belgium.

Katarina S Popovič (KS)

Neuroradiology Department, Clinical Institute of Radiology, University Medical Center Ljubljana, Zaloška 7, 1000, Ljubljana, Slovenia.

Maria I Argyropoulou (MI)

Department of Clinical Radiology and Imaging, Medical School, University of Ioannina, Ioannina, Greece.

Kshitij Mankad (K)

Radiology Department, Great Ormond Street Hospital for Children, London, UK.

Hervé J Brisse (HJ)

Imaging Department, Institut Curie, Paris, France.
Institut Curie, Paris Sciences Et Lettres (PSL) Research University, Paris, France.

Amy Juliano (A)

Department of Radiology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.

Mariasavina Severino (M)

Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.

Sofie Van Cauter (S)

Department of Medical Imaging, Ziekenhuis Oost-Limburg, Genk, Belgium.
Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.

Mai-Lan Ho (ML)

Nationwide Children's Hospital, Columbus, OH, USA.
The Ohio State University, Columbus, OH, USA.

Caroline D Robson (CD)

Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.

Ata Siddiqui (A)

Radiology Department, Guy's and St Thomas' NHS Foundation Trust, London, UK.
Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London, UK.

Steve Connor (S)

Radiology Department, Guy's and St Thomas' NHS Foundation Trust, London, UK.
Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London, UK.
School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College, London, UK.

Sotirios Bisdas (S)

Lysholm Department of Neuroradiology, The National Hospital for Neurology & Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK.
Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH