Origin of Multisynaptic Corticospinal Pathway to Forelimb Segments in Macaques and Its Reorganization After Spinal Cord Injury.


Journal

Frontiers in neural circuits
ISSN: 1662-5110
Titre abrégé: Front Neural Circuits
Pays: Switzerland
ID NLM: 101477940

Informations de publication

Date de publication:
2022
Historique:
received: 01 01 2022
accepted: 01 03 2022
entrez: 25 4 2022
pubmed: 26 4 2022
medline: 27 4 2022
Statut: epublish

Résumé

Removal of the monosynaptic corticospinal pathway (CSP) terminating within the forelimb segments severely impairs manual dexterity. Functional recovery from the monosynaptic CSP lesion can be achieved through the remaining multisynaptic CSP toward the forelimb segments. In the present study, we applied retrograde transsynaptic labeling with rabies virus to a monkey model of spinal cord injury. By injecting the virus into the spinal forelimb segments immediately after the monosynaptic CSP lesion, we showed that the contralateral primary motor cortex (M1), especially its caudal and bank region (so-called "new" M1), was the principal origin of the CSP linking the motor cortex to the spinal forelimb segments disynaptically (disynaptic CSP). This forms a striking contrast to the architecture of the monosynaptic CSP that involves extensively other motor-related areas, together with M1. Next, the rabies injections were made at the recovery period of 3 months after the monosynaptic CSP lesion. The second-order labeled neurons were located in the ipsilateral as well as in the contralateral "new" M1. This indicates that the disynaptic CSP input from the ipsilateral "new" M1 is recruited during the motor recovery from the monosynaptic CSP lesion. Our results suggest that the disynaptic CSP is reorganized to connect the ipsilateral "new" M1 to the forelimb motoneurons for functional compensation after the monosynaptic CSP lesion.

Identifiants

pubmed: 35463202
doi: 10.3389/fncir.2022.847100
pmc: PMC9020432
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

847100

Informations de copyright

Copyright © 2022 Ninomiya, Nakagawa, Inoue, Nishimura, Oishi, Yamashita and Takada.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The reviewer RY declared a shared affiliation with the authors to the handling editor at the time of review.

Références

J Comp Neurol. 1995 Jun 5;356(3):457-80
pubmed: 7642806
Science. 2007 Nov 16;318(5853):1150-5
pubmed: 18006750
J Neurosci. 1991 Mar;11(3):667-89
pubmed: 1705965
Exp Brain Res. 1978 Sep 15;33(1):101-30
pubmed: 699994
J Comp Neurol. 2009 Mar 10;513(2):151-63
pubmed: 19125408
Physiology (Bethesda). 2007 Apr;22:145-52
pubmed: 17420305
Nature. 2012 Jul 12;487(7406):235-8
pubmed: 22722837
Sci Rep. 2019 Dec 3;9(1):18230
pubmed: 31796773
Science. 2015 Oct 2;350(6256):98-101
pubmed: 26430122
Cereb Cortex. 2020 May 14;30(5):3259-3270
pubmed: 31813974
PLoS One. 2011;6(9):e24854
pubmed: 21969864
J Neurosci. 2005 Mar 9;25(10):2547-56
pubmed: 15758164
Brain Behav Evol. 1975;12(3):161-200
pubmed: 1212616
Exp Brain Res. 1977 Sep 28;29(3-4):323-46
pubmed: 913521
J Neurosci. 1993 Mar;13(3):952-80
pubmed: 7680069
Proc Natl Acad Sci U S A. 2017 Jan 17;114(3):604-609
pubmed: 28049844
Brain Res. 1978 Mar 31;143(3):393-419
pubmed: 348267
J Neurosci Methods. 2000 Nov 15;103(1):63-71
pubmed: 11074096
J Physiol. 1982 Feb;323:245-65
pubmed: 7097574
Brain Behav Evol. 1983;23(3-4):165-83
pubmed: 6667369
Sci Rep. 2015 Jul 01;5:11986
pubmed: 26132896
J Physiol. 1992 Apr;449:429-40
pubmed: 1522516
J Neurophysiol. 2013 Jun;109(12):2853-65
pubmed: 23515793
J Neurophysiol. 2004 Nov;92(5):3142-7
pubmed: 15175371
Cereb Cortex. 2011 Dec;21(12):2797-808
pubmed: 21515714
J Comp Neurol. 1994 Sep 1;347(1):115-26
pubmed: 7798376
J Comp Neurol. 2013 Dec 15;521(18):4205-35
pubmed: 23840034
Brain. 2009 Mar;132(Pt 3):709-21
pubmed: 19155271
J Neurophysiol. 2006 Jun;95(6):3674-85
pubmed: 16495365
J Neurosci. 1995 May;15(5 Pt 1):3284-306
pubmed: 7538558
Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):918-23
pubmed: 19139417
J Comp Neurol. 1991 Sep 22;311(4):445-62
pubmed: 1757597
Neuroscience. 2010 Dec 29;171(4):1164-79
pubmed: 20933586
Exp Brain Res. 1981;42(3-4):299-318
pubmed: 7238672
Proc Natl Acad Sci U S A. 2006 May 23;103(21):8257-62
pubmed: 16702556
J Neurosci. 2012 May 16;32(20):6851-8
pubmed: 22593054
Brain Res. 1987 Feb 24;404(1-2):307-12
pubmed: 3032334
J Neurosci. 2013 Jun 5;33(23):9614-25
pubmed: 23739958
Cereb Cortex. 2019 Jul 5;29(7):3059-3073
pubmed: 30060105
Exp Brain Res. 1984;56(2):279-92
pubmed: 6090195

Auteurs

Taihei Ninomiya (T)

Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan.
Japan Agency for Medical Research and Development (AMED), Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan.
Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan.
Department of Physiological Sciences, School of Life Sciences, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan.

Hiroshi Nakagawa (H)

Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan.
Japan Agency for Medical Research and Development (AMED), Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan.
Department of Molecular Neuroscience, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan.

Ken-Ichi Inoue (KI)

Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan.
Japan Agency for Medical Research and Development (AMED), Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan.

Yukio Nishimura (Y)

Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan.
Department of Physiological Sciences, School of Life Sciences, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan.
Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.

Takao Oishi (T)

Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan.
Japan Agency for Medical Research and Development (AMED), Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan.

Toshihide Yamashita (T)

Japan Agency for Medical Research and Development (AMED), Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan.
Department of Molecular Neuroscience, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan.

Masahiko Takada (M)

Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan.
Japan Agency for Medical Research and Development (AMED), Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH