An Efficient Pipeline for Biophysical Modeling of Neurons.
Journal
International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering
ISSN: 1948-3546
Titre abrégé: Int IEEE EMBS Conf Neural Eng
Pays: United States
ID NLM: 101322919
Informations de publication
Date de publication:
May 2021
May 2021
Historique:
entrez:
25
4
2022
pubmed:
26
4
2022
medline:
26
4
2022
Statut:
ppublish
Résumé
Automation of the process of developing biophysical conductance-based neuronal models involves the selection of numerous interacting parameters, making the overall process computationally intensive, complex, and often intractable. A recently reported insight about the possible grouping of currents into distinct biophysical modules associated with specific neurocomputational properties also simplifies the process of automated selection of parameters. The present paper adds a new current module to the previous report to design spike frequency adaptation and bursting characteristics, based on user specifications. We then show how our proposed grouping of currents into modules facilitates the development of a pipeline that automates the biophysical modeling of single neurons that exhibit multiple neurocomputational properties. The software will be made available for public download via our site cyneuro.org.
Identifiants
pubmed: 35465293
doi: 10.1109/ner49283.2021.9441222
pmc: PMC9033155
mid: NIHMS1798987
doi:
Types de publication
Journal Article
Langues
eng
Pagination
99-102Subventions
Organisme : NIMH NIH HHS
ID : R01 MH122023
Pays : United States
Références
Nat Neurosci. 2004 Dec;7(12):1345-52
pubmed: 15558066
Neuron. 2017 Aug 2;95(3):656-672.e3
pubmed: 28772124
Neuroscience. 2016 Oct 15;334:309-331
pubmed: 27530698
Elife. 2020 Sep 17;9:
pubmed: 32940606
J Neurophysiol. 2000 Nov;84(5):2398-408
pubmed: 11067982
PLoS Comput Biol. 2006 Jul 21;2(7):e94
pubmed: 16848639
Hippocampus. 2014 Dec;24(12):1430-48
pubmed: 24978936
PLoS One. 2017 Aug 7;12(8):e0182648
pubmed: 28787026