Inclusion of Clinicians in the Development and Evaluation of Clinical Artificial Intelligence Tools: A Systematic Literature Review.
artificial intelligence (AI)
clinical AI
clinician
evaluation
healthcare
human-centered design
machine learning
Journal
Frontiers in psychology
ISSN: 1664-1078
Titre abrégé: Front Psychol
Pays: Switzerland
ID NLM: 101550902
Informations de publication
Date de publication:
2022
2022
Historique:
received:
07
12
2021
accepted:
09
02
2022
entrez:
25
4
2022
pubmed:
26
4
2022
medline:
26
4
2022
Statut:
epublish
Résumé
The application of machine learning (ML) and artificial intelligence (AI) in healthcare domains has received much attention in recent years, yet significant questions remain about how these new tools integrate into frontline user workflow, and how their design will impact implementation. Lack of acceptance among clinicians is a major barrier to the translation of healthcare innovations into clinical practice. In this systematic review, we examine when and how clinicians are consulted about their needs and desires for clinical AI tools. Forty-five articles met criteria for inclusion, of which 24 were considered design studies. The design studies used a variety of methods to solicit and gather user feedback, with interviews, surveys, and user evaluations. Our findings show that tool designers consult clinicians at various but inconsistent points during the design process, and most typically at later stages in the design cycle (82%, 19/24 design studies). We also observed a smaller amount of studies adopting a human-centered approach and where clinician input was solicited throughout the design process (22%, 5/24). A third (15/45) of all studies reported on clinician trust in clinical AI algorithms and tools. The surveyed articles did not universally report validation against the "gold standard" of clinical expertise or provide detailed descriptions of the algorithms or computational methods used in their work. To realize the full potential of AI tools within healthcare settings, our review suggests there are opportunities to more thoroughly integrate frontline users' needs and feedback in the design process.
Identifiants
pubmed: 35465567
doi: 10.3389/fpsyg.2022.830345
pmc: PMC9022040
doi:
Types de publication
Systematic Review
Langues
eng
Pagination
830345Informations de copyright
Copyright © 2022 Tulk Jesso, Kelliher, Sanghavi, Martin and Henrickson Parker.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
J Am Med Inform Assoc. 2021 Mar 1;28(3):653-663
pubmed: 33325504
Int J Environ Res Public Health. 2019 Jun 25;16(12):
pubmed: 31242687
Ext Abstr Hum Factors Computing Syst. 2018 Apr;2018:
pubmed: 30320307
Open Nurs J. 2017 Apr 17;11:54-63
pubmed: 28567170
J Med Syst. 2021 Mar 1;45(4):48
pubmed: 33646459
Yearb Med Inform. 2016 Aug 02;Suppl 1:S103-16
pubmed: 27488402
J Am Med Inform Assoc. 2018 Jan 1;25(1):81-87
pubmed: 29016825
JAMA. 2005 Mar 9;293(10):1261-3
pubmed: 15755949
JAMA. 2018 Dec 4;320(21):2199-2200
pubmed: 30398550
Diagn Interv Imaging. 2019 Jun;100(6):327-336
pubmed: 31072803
Radiography (Lond). 2021 Aug;27(3):861-866
pubmed: 33622574
J Med Internet Res. 2020 Nov 19;22(11):e22421
pubmed: 33211015
J Am Med Inform Assoc. 2001 Nov-Dec;8(6):527-34
pubmed: 11687560
Nat Med. 2019 Sep;25(9):1337-1340
pubmed: 31427808
Stud Health Technol Inform. 2019 Aug 21;264:853-857
pubmed: 31438045
Appl Clin Inform. 2019 Aug;10(4):655-669
pubmed: 31486057
J Am Med Inform Assoc. 2020 Dec 9;27(12):1850-1859
pubmed: 33106874
JMIR Med Inform. 2018 Apr 18;6(2):e24
pubmed: 29669706
BMJ Health Care Inform. 2019 Nov;26(1):
pubmed: 31780459
J Am Med Inform Assoc. 2018 Nov 1;25(11):1547-1551
pubmed: 30101305
J Diabetes Complications. 2015 Jul;29(5):691-8
pubmed: 25953402
J Med Internet Res. 2020 Jun 19;22(6):e19091
pubmed: 32459655
J Prof Nurs. 2005 Nov-Dec;21(6):335-44
pubmed: 16311228
Int J Older People Nurs. 2019 Dec;14(4):e12266
pubmed: 31475466
Surgery. 2019 May;165(5):1035-1045
pubmed: 30792011
Clin Orthop Relat Res. 2007 Feb;455:3-5
pubmed: 17340682
J Med Internet Res. 2019 Mar 20;21(3):e12802
pubmed: 30892270
ACM Trans Comput Hum Interact. 2016 May;2016:4477-4488
pubmed: 27833397
ACI open. 2020 Jul;4(2):e108-e113
pubmed: 33274314
NPJ Digit Med. 2020 Aug 21;3:107
pubmed: 32885053
J Multidiscip Healthc. 2020 Nov 02;13:1375-1390
pubmed: 33173300
Ann Intern Med. 2020 Jun 2;172(11 Suppl):S137-S144
pubmed: 32479180
Nat Med. 2020 Aug;26(8):1229-1234
pubmed: 32572267
Ann Fam Med. 2017 Sep;15(5):419-426
pubmed: 28893811
JMIR Ment Health. 2018 Dec 14;5(4):e10240
pubmed: 30552086
Ann Emerg Med. 2017 Sep;70(3):338-344.e3
pubmed: 28238497
Stud Health Technol Inform. 2020 Jun 16;270:1001-1005
pubmed: 32570532
Interact J Med Res. 2016 May 16;5(2):e14
pubmed: 27185210
JMIR Med Inform. 2020 Jul 15;8(7):e15182
pubmed: 32673244
Nurse Educ Today. 2020 Jan;84:104240
pubmed: 31715472
Nature. 2020 Jan;577(7788):89-94
pubmed: 31894144
JAMA. 2020 Dec 15;324(23):2369-2370
pubmed: 33320236
IEEE J Biomed Health Inform. 2019 May;23(3):1261-1268
pubmed: 29993563
BJPsych Open. 2021 Jan 06;7(1):e22
pubmed: 33403948
JAMA Intern Med. 2021 Aug 1;181(8):1065-1070
pubmed: 34152373
Eur Radiol. 2020 Oct;30(10):5525-5532
pubmed: 32458173
Int J Med Inform. 2017 Jan;97:86-97
pubmed: 27919399
JMIR Med Inform. 2020 Jul 24;8(7):e18599
pubmed: 32706688
Comput Methods Programs Biomed. 2019 Oct;179:104993
pubmed: 31443866
EGEMS (Wash DC). 2019 Jan 24;7(1):1
pubmed: 30705919
Oral Dis. 2019 Sep;25(6):1555-1563
pubmed: 31002445
Int J Med Inform. 2019 Oct;130:103938
pubmed: 31442847
J Biomed Inform. 2008 Apr;41(2):387-92
pubmed: 18029232
J Acquir Immune Defic Syndr. 2019 Dec;82 Suppl 3:S230-S243
pubmed: 31764259
JMIR Hum Factors. 2021 Jun 18;8(2):e28236
pubmed: 34142968