Artificial intelligence applied to cardiovascular imaging, a critical focus on echocardiography: The point-of-view from "the other side of the coin".
Hub-and-Spoke network
artificial intelligence
cardiovascular imaging
clinical echocardiography
clinical practice
Journal
Journal of clinical ultrasound : JCU
ISSN: 1097-0096
Titre abrégé: J Clin Ultrasound
Pays: United States
ID NLM: 0401663
Informations de publication
Date de publication:
Jul 2022
Jul 2022
Historique:
revised:
16
04
2022
received:
28
03
2022
accepted:
19
04
2022
pubmed:
26
4
2022
medline:
19
7
2022
entrez:
25
4
2022
Statut:
ppublish
Résumé
Cardiovascular imaging has achieved a crucial role in the management of cardiovascular diseases. In this field, echocardiography advantages include wide availability, portability, and affordability, at a relatively low cost. However, echocardiographic assessment requires highly trained operators, and implies high observer variability, as compared with the other cardiac imaging modalities. Hence, artificial intelligence might be extremely helpful. From the point-of-view of the peripheral "Spoke" Hospital potential user ("the other side of the coin"), artificial intelligence development appears very slow in the clinical arena. Many limitations are still present, and require full involvement, cooperation, and coordination of professional operators into Hub-and-Spoke network.
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
772-780Informations de copyright
© 2022 Wiley Periodicals LLC.
Références
Kusunose K, Haga A, Abe T, Sata M. Utilization of artificial intelligence in echocardiography. Circ J. 2019;83:1623-1629.
Kusunose K. Steps to use artificial intelligence in echocardiography. J Echocardiogr. 2021;19:21-27.
Alsharqi M, Woodward WJ, Mumith JA, Markham DC, Upton R, Leeson P. Artificial intelligence and echocardiography. Echo Res Pract. 2018;5:R115-R125.
Seetharam K, Raina S, Sengupta PP. The role of artificial intelligence in echocardiography. Curr Cardiol Rep. 2020;22:99.
Gandhi S, Mosleh W, Shen J, Chow CM. Automation, machine learning, and artificial intelligence in echocardiography: a brave new world. Echocardiography. 2018;35:1402-1418.
Seetharam K, Brito D, Farjo PD, Sengupta PP. The role of artificial intelligence in cardiovascular imaging: state of the art review. Front Cardiovasc Med. 2020;7:618849.
Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial intelligence in precision cardiovascular medicine. J Am Coll Cardiol. 2017;69:2657-2664.
Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP. Machine learning in cardiovascular medicine: are we there yet? Heart. 2018;104:1156-1164.
Johnson KW, Torres Soto J, Glicksberg BS, et al. Artificial intelligence in cardiology. J Am Coll Cardiol. 2018;71:2668-2679.
Westcott RJ, Tcheng JE. Artificial intelligence and machine learning in cardiology. JACC Cardiovasc Interv. 2019;12:1312-1314.
Lim LJ, Tison GH, Delling FN. Artificial intelligence in cardiovascular imaging. Methodist Debakey Cardiovasc J. 2020;16:138-145.
Litjens G, Ciompi F, Wolterink JM, et al. State-of-the-art deep learning in cardiovascular image analysis. JACC Cardiovasc Imaging. 2019;12:1549-1565.
Dey D, Slomka PJ, Leeson P, et al. Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73:1317-1335.
Davis A, Billick K, Horton K, et al. Artificial intelligence and echocardiography: a primer for cardiac sonographers. J Am Soc Echocardiogr. 2020;33:1061-1066.
Laumer F, Di Vece D, Cammann VL, et al. Assessment of artificial intelligence in echocardiography diagnostics in differentiating takotsubo syndrome from myocardial infarction. JAMA Cardiol. 2022;e220183. doi:10.1001/jamacardio.2022.0183
Motwani M, Dey D, Berman DS, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J. 2017;38:500-507.
Nakanishi R, Dey D, Commandeur F, et al. Machine learning in predicting coronary heart disease and cardiovascular disease events: results from the multi-ethnic study of atherosclerosis (MESA) (abstr). J Am Coll Cardiol. 2018;71:A1483.
Gaur S, Øvrehus KA, Dey D, et al. Coronary plaque quantification and fractional flow reserve by coronary computed tomography angiography identify ischaemia-causing lesions. Eur Heart J. 2016;37:1220-1227.
Zreik M, Lessmann N, van Hamersvelt RW, et al. Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis. Med Image Anal. 2018;44:72-85.
Tesche C, De Cecco CN, Baumann S, et al. Coronary CT angiography-derived fractional flow reserve: machine learning algorithm versus computational fluid dynamics modeling. Radiology. 2018;288:64-72.
Tan LK, McLaughlin RA, Lim E, Abdul Aziz YF, Liew YM. Fully automated segmentation of the left ventricle in cine cardiac MRI using neural network regression. J Magn Reson Imaging. 2018;48:140-152.
Winther HB, Hundt C, Schmidt B, et al. V-net: deep learning for generalized biventricular mass and function parameters using multicenter cardiac MRI data. JACC Cardiovasc Imaging. 2018;11:1036-1038.
Baessler B, Mannil M, Oebel S, Maintz D, Alkadhi H, Manka R. Subacute and chronic left ventricular myocardial scar: accuracy of texture analysis on nonenhanced cine MR images. Radiology. 2018;286:103-112.
Betancur JCF, Motlagh M, Sharir T, et al. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study. J Am Coll Cardiol Img. 2018;11:1654-1663.
Arsanjani R, Xu Y, Dey D, et al. Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population. J Nucl Cardiol. 2013;20:553-562.
Arsanjani R, Dey D, Khachatryan T, et al. Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population. J Nucl Cardiol. 2015;22:877-884.
Juarez-Orozco LE, Martinez-Manzanera O, van der Zant FM, Knol RJJ, Knuuti J. Deep learning in quantitative PET myocardial perfusion imaging: a study on cardiovascular event prediction. JACC Cardiovasc Imaging. 2020;13:180-182.
Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate view classification of echocardiograms using deep learning. NPJ Digital Med. 2018;1:6.
Zhang J, Gajjala S, Agrawal P, et al. Fully automated echocardiogram interpretation in clinical practice. Circulation. 2018;138:1623-1635.
Tromp J, Seekings PJ, Hung CL, et al. Automated interpretation of systolic and diastolic function on the echocardiogram: a multicohort study. Lancet Digit Health. 2022;4:e46-e54.
Ouyang D, He B, Ghorbani A, et al. Video-based AI for beat-to-beat assessment of cardiac function. Nature. 2020;580:252-256.
Garcia-Canadilla P, Sanchez-Martinez S, Martí-Castellote PM, et al. Machine-learning-based exploration to identify remodeling patterns associated with death or heart-transplant in pediatric-dilated cardiomyopathy. J Heart Lung Transplant. 2021;41:516-526. doi:10.1016/j.healun.2021.11.020
Tokodi M, Shrestha S, Bianco C, et al. Interpatient similarities in cardiac function: a platform for personalized cardiovascular medicine. JACC Cardiovasc Imaging. 2020;13:1119-1132.
Otani K, Nakazono A, Salgo IS, Lang RM, Takeuchi M. Three-dimensional echocardiographic assessment of left heart chamber size and function with fully automated quantification software in patients with atrial fibrillation. J Am Soc Echocardiogr. 2016;29:955-965.
Spitzer E, Ren B, Soliman OI, Zijlstra F, Van Mieghem NM, Geleijnse ML. Accuracy of an automated transthoracic echocardiographic tool for 3D assessment of left heart chamber volumes. Echocardiography. 2017;34:199-209.
Carvajal-Rivera JJ, Lopez-Quintero JC, Gonzalez-Menchen C, et al. Left ventricular volumes and ejection fraction quantification using an automated three-dimensional adaptive analytic echocardiographic algorithm in pediatric population. Echocardiography. 2018;35:1827-1834.
Medvedofsky D, Mor-Avi V, Amzulescu M, et al. Three-dimensional echocardiographic quantification of the left-heart chambers using an automated adaptive analytics algorithm: multicentre validation study. Eur Heart J Cardiovasc Imaging. 2018;19:47-58.
Raghavendra U, Fujita H, Gudigar A, et al. Automated technique for coronary artery disease characterization and classification using DD-DTDWT in ultrasound images. Biomed Signal Process Control. 2018;40:324-334.
Kusunose K, Abe T, Haga A, et al. A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images. JACC Cardiovasc Imaging. 2020;13:374-381.
Gallard A, Bidaut A, Hubert A, et al. Characterization of responder profiles for cardiac resynchronization therapy through unsupervised clustering of clinical and strain data. J Am Soc Echocardiogr. 2021;34:483-493.
Sanchez-Martinez S, Duchateau N, Erdei T, Fraser AG, Bijnens BH, Piella G. Characterization of myocardial motion patterns by unsupervised multiple kernel learning. Med Image Anal. 2017;35:70-82.
Jeganathan J, Knio Z, Amador Y, et al. Artificial intelligence in mitral valve analysis. Ann Card Anaesth. 2017;20:129-134.
Bartko PE, Heitzinger G, Spinka G, et al. Principal morphomic and functional components of secondary mitral regurgitation. JACC Cardiovasc Imaging. 2021;14:2288-2300. doi:10.1016/j.jcmg.2021.05.020
Fatima H, Mahmood F, Sehgal S, et al. Artificial intelligence for dynamic echocardiographic tricuspid valve analysis: a new tool in echocardiography. J Cardiothorac Vasc Anesth. 2020;34:2703-2706.
Chen X, Owen CA, Huang EC, et al. Artificial intelligence in echocardiography for anesthesiologists. J Cardiothorac Vasc Anesth. 2021;35:251-261.
Picano E, Zagatina A, Wierzbowska-Drabik K, Borguezan Daros C, D'Andrea A, Ciampi Q. Sustainability and versatility of the ABCDE protocol for stress echocardiography. J Clin Med. 2020;9:3184.
Da Fonseca MH, Kovaleski F, Picinin CT, Pedroso B, Rubbo P. E-health practices and technologies: a systematic review from 2014 to 2019. Healthcare. 2021;9:1192.
Seetharam K, Kagiyama N, Sengupta PP. Application of mobile health, telemedicine and artificial intelligence to echocardiography. Echo Res Pract. 2019;6:R41-R52.
Ugolini C, Nobilio L. Vertical integration and contractual network in the cardiovascular sector: the experience of the italian region Emilia Romagna. Int J Integr Care. 2003;3:e20.
Fiorentini A. Machine learning e dispositivi medici: riflessioni in materia di responsabilità civile. Il Corriere Giuridico. 2021;10:1258-1268.
Narang A, Bae R, Hong H, et al. Utility of a deep-learning algorithm to guide novices to acquire echocardiograms for limited diagnostic use. JAMA Cardiol. 2021;6:624-632.
Ulloa Cerna AE, Jing L, Good CW, et al. Deep-learning-assisted analysis of echocardiographic videos improves predictions of all-cause mortality. Nat Biomed Eng. 2021;5:546-554.
Theagarajan R, Bhanu B. Privacy preserving defense for black box classifiers against on-line adversarial attacks. IEEE Trans Pattern Anal Mach Intell. 2021;1. doi:10.1109/TPAMI.2021.3125931
Nicolosi GL. Progress in cardiac imaging: from echocardiography to multimodality imaging. G Ital Cardiol. 2021;22:85-94.