Model-Based Prediction of Irinotecan-Induced Grade 4 Neutropenia in Advanced Cancer Patients: Influence of Demographic and Clinical Factors.
Journal
Clinical pharmacology and therapeutics
ISSN: 1532-6535
Titre abrégé: Clin Pharmacol Ther
Pays: United States
ID NLM: 0372741
Informations de publication
Date de publication:
08 2022
08 2022
Historique:
received:
12
02
2022
accepted:
15
04
2022
pubmed:
26
4
2022
medline:
22
7
2022
entrez:
25
4
2022
Statut:
ppublish
Résumé
Severe neutropenia is the major dose-liming toxicity of irinotecan-based chemotherapy. The objective was to assess to what extent a population pharmacokinetic/pharmacodynamic model including patient-specific demographic/clinical characteristics, individual pharmacokinetics, and absolute neutrophil counts (ANCs) can predict irinotecan-induced grade 4 neutropenia. A semimechanistic population pharmacokinetic/pharmacodynamic model was developed to describe neutrophil response over time in 197 patients with cancer receiving irinotecan. For covariate analysis, sex, race, age, pretreatment total bilirubin, and body surface area were evaluated to identify significant covariates on system-related parameters (mean transit time (MTT) and ɣ) and sensitivity to neutropenia effects of irinotecan and SN-38 (SLOPE). The model-based simulation was performed to assess the contribution of the identified covariates, individual pharmacokinetics, and baseline ANC alone or with incremental addition of weekly ANC up to 3 weeks on predicting irinotecan-induced grade 4 neutropenia. The time course of neutrophil response was described using the model assuming that irinotecan and SN-38 have toxic effects on bone marrow proliferating cells. Sex and pretreatment total bilirubin explained 10.5% of interindividual variability in MTT. No covariates were identified for SLOPE and γ. Incorporating sex and pretreatment total bilirubin (area under the receiver operating characteristic curve (AUC-ROC): 50%, 95% CI 50-50%) or with the addition of individual pharmacokinetics (AUC-ROC: 62%, 95% CI 53-71%) in the model did not result in accurate prediction of grade 4 neutropenia. However, incorporating ANC only at baseline and week 1 in the model achieved a good prediction (AUC-ROC: 78%, 95% CI 69-88%). These results demonstrate the potential applicability of a model-based approach to predict irinotecan-induced neutropenia, which ultimately allows for personalized intervention to maximize treatment outcomes.
Identifiants
pubmed: 35467016
doi: 10.1002/cpt.2621
pmc: PMC9843820
mid: NIHMS1801200
doi:
Substances chimiques
Irinotecan
7673326042
Bilirubin
RFM9X3LJ49
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
316-326Subventions
Organisme : NIGMS NIH HHS
ID : T32 GM086330
Pays : United States
Informations de copyright
© 2022 The Authors. Clinical Pharmacology & Therapeutics © 2022 American Society for Clinical Pharmacology and Therapeutics.
Références
J Clin Oncol. 2002 Jan 1;20(1):7-8
pubmed: 11773147
N Engl J Med. 2020 Aug 13;383(7):684-686
pubmed: 32786195
J Clin Oncol. 2014 Aug 1;32(22):2328-34
pubmed: 24958824
J Natl Compr Canc Netw. 2008 Feb;6(2):109-18
pubmed: 18319047
J Natl Cancer Inst. 2007 Sep 5;99(17):1290-5
pubmed: 17728214
CPT Pharmacometrics Syst Pharmacol. 2021 Mar;10(3):241-254
pubmed: 33470053
J Natl Cancer Inst. 2004 Nov 3;96(21):1585-92
pubmed: 15523087
Nat Aging. 2021 Aug;1(8):715-733
pubmed: 34514433
Cancer Chemother Pharmacol. 2012 Apr;69(4):881-90
pubmed: 22057837
J Clin Oncol. 2004 Apr 15;22(8):1382-8
pubmed: 15007088
Oncologist. 2006 Sep;11(8):944-54
pubmed: 16951398
Clin Pharmacokinet. 2018 Oct;57(10):1229-1254
pubmed: 29520731
Cancer Treat Rev. 2008 Nov;34(7):656-69
pubmed: 18558463
Eur J Cancer. 2020 Dec;141:9-20
pubmed: 33125947
J Clin Oncol. 2003 Mar 1;21(5):807-14
pubmed: 12610178
J Clin Invest. 1976 Sep;58(3):705-15
pubmed: 956397
Pharmacogenomics J. 2018 Jan;18(1):35-42
pubmed: 27845419
J Clin Pharmacol. 2007 Jan;47(1):78-86
pubmed: 17192505
Clin Cancer Res. 2006 Sep 15;12(18):5481-90
pubmed: 17000683
Pharmacogenomics J. 2002;2(1):43-7
pubmed: 11990381
Nat Commun. 2020 Mar 31;11(1):1613
pubmed: 32235862
Eur J Cancer. 2000 Apr;36 Suppl 1:S11-4
pubmed: 10785604
Pharmacogenomics J. 2013 Oct;13(5):417-22
pubmed: 22664479
Comput Methods Programs Biomed. 2009 Mar;93(3):283-91
pubmed: 19084287
J Clin Oncol. 1996 Nov;14(11):2959-67
pubmed: 8918493
J Clin Oncol. 2009 Jun 1;27(16):2604-14
pubmed: 19349540
Cancer. 2004 Jan 15;100(2):228-37
pubmed: 14716755
Ann Oncol. 2012 Jul;23(7):1766-71
pubmed: 22048149
J Clin Oncol. 1993 Nov;11(11):2194-204
pubmed: 8229134
J Clin Pharmacol. 2021 Jun;61 Suppl 1:S36-S51
pubmed: 34185896
J Clin Oncol. 2002 Dec 15;20(24):4713-21
pubmed: 12488418
Cancer. 2011 May 1;117(9):1917-27
pubmed: 21509769
J Clin Oncol. 2010 Feb 10;28(5):866-71
pubmed: 20038727
Pharm Res. 2021 Apr;38(4):593-605
pubmed: 33733372
Clin Cancer Res. 2010 Jan 15;16(2):736-42
pubmed: 20068078
Crit Rev Oncol Hematol. 2014 Jun;90(3):190-9
pubmed: 24434034
Br J Cancer. 2022 Mar;126(4):640-651
pubmed: 34703007
J Control Release. 2020 Jun 10;322:312-325
pubmed: 32243974
Clin Cancer Res. 2001 Aug;7(8):2182-94
pubmed: 11489791
Clin Cancer Res. 2010 Aug 1;16(15):3832-42
pubmed: 20562211
JCO Oncol Pract. 2022 Apr;18(4):270-277
pubmed: 34860573