An experimental investigation of particle and NOx emissions for a non-road diesel engine equipped with an integrated DOC + CDPF + SCR aftertreatment system during different operations.
Integrated aftertreatment
Nitrogenous compounds
Non-road diesel engine
Particulate emissions
Regeneration
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
Sep 2022
Sep 2022
Historique:
received:
31
12
2021
accepted:
04
04
2022
pubmed:
26
4
2022
medline:
26
4
2022
entrez:
25
4
2022
Statut:
ppublish
Résumé
An integrated aftertreatment system consisting of diesel oxidation catalyst (DOC), catalytic diesel particulate filter (CDPF), and selective catalytic reduction (SCR) is an effective way of reducing both NOx and particulate matter (PM). In this paper, the effect of DOC + CDPF + SCR on NO
Identifiants
pubmed: 35467182
doi: 10.1007/s11356-022-20152-x
pii: 10.1007/s11356-022-20152-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
63815-63836Subventions
Organisme : the National Key R & D Program of China
ID : 2017YFC0211203
Organisme : State Key Laboratory of Power System of Tractor
ID : SKT2020004
Organisme : Innovative Research Team Development Program of Ministry of Education of China
ID : IRT_17R83
Organisme : 111 Project
ID : B17034
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Apicella B, Mancaruso E et al (2020) Effect of after-treatment systems on particulate matter emissions in diesel engine exhaust. Exp Thermal Fluid Sci 116:110107
doi: 10.1016/j.expthermflusci.2020.110107
Ayodhya AS, Narayanappa KG (2018) An overview of after-treatment systems for diesel engines. Environ Sci Pollut Res 25(35):35034–35047
doi: 10.1007/s11356-018-3487-8
Bai S, Han J et al (2018) Experimental investigation of exhaust thermal management on NOx emissions of heavy-duty diesel engine under the world harmonized transient cycle (WHTC). Appl Therm Eng 142:421–432
doi: 10.1016/j.applthermaleng.2018.07.042
Bémer D, Subra I (2017) Monitoring particle emission for non-road diesel machineries equipped with particulate filters. J Aerosol Sci 113:153–165
doi: 10.1016/j.jaerosci.2017.07.019
Boccardo G, Millo F et al (2019) Experimental investigation on a 3000 bar fuel injection system for a SCR-free non-road diesel engine. Fuel 243:342–351
doi: 10.1016/j.fuel.2019.01.122
Boutikos P, Březina J et al (2019) Comparison of O2 and NO2 impact on PtOx and PdOx formation in diesel oxidation catalysts and their reduction by CO and C3H6 pulses. Chem Eng J 377:119654
doi: 10.1016/j.cej.2018.08.040
Choi B, Lee K (2014) LNT/CDPF catalysts for simultaneous removal of NOx and PM from diesel vehicle exhaust. Chem Eng J 240:476–486
doi: 10.1016/j.cej.2013.10.100
Conway R, Chatterjee S, Beavan A, Goersmann C et al (2005) NOx and PM reduction using combined SCR and DPF technology in heavy duty diesel applications. SAE Technical Paper 2005–01–3548, 2005, https://doi.org/10.4271/2005-01-3548 .
Dallmann AT, Posada F, Bandivadekar A (2018) Costs of emission reduction technologies for diesel engines used in non-road vehicles and equipment. http://admin.indiaenvironmentportal.org.in/files/file/Non_Road_Emission_Control.pdf
Desouza CD, Marsh DJ et al (2020) Real-world emissions from non-road mobile machinery in London. Atmos Environ 223:117301
doi: 10.1016/j.atmosenv.2020.117301
Duraisamy G, Rangasamy M et al (2019) Statistical and experimental investigation of single fuel reactivity controlled compression ignition combustion on a non-road diesel engine. Energy Convers Manag 199:112025
doi: 10.1016/j.enconman.2019.112025
Fang J, Meng Z et al (2017) The influence of ash on soot deposition and regeneration processes in diesel particular filter. Appl Therm Eng 124:633–640
doi: 10.1016/j.applthermaleng.2017.06.076
Fang J, Shi R et al (2019a) The interaction effect of catalyst and ash on diesel soot oxidation by thermogravimetric analysis. Fuel 258:116151
doi: 10.1016/j.fuel.2019.116151
Fang J, Meng Z et al (2019b) The effect of operating parameters on regeneration characteristics and particulate emission characteristics of diesel particulate filters. Appl Therm Eng 148:860–867
doi: 10.1016/j.applthermaleng.2018.11.066
Fang J, Zhang Q et al (2020) Effects of ash composition and ash stack heights on soot deposition and oxidation processes in catalytic diesel particulate filter. J Energy Inst 93(5):1942–1950
doi: 10.1016/j.joei.2020.04.009
Feng X, Ge Y et al (2014) Experimental study on the nitrogen dioxide and particulate matter emissions from diesel engine retrofitted with particulate oxidation catalyst. Sci Total Environ 472:56–62
doi: 10.1016/j.scitotenv.2013.11.041
Ganesh D, Ayyappan PR et al (2019) Experimental investigation of iso-butanol/diesel reactivity controlled compression ignition combustion in a non-road diesel engine. Appl Energy 242:1307–1319
doi: 10.1016/j.apenergy.2019.03.166
He L, Zhang S et al (2020) On-road emission measurements of reactive nitrogen compounds from heavy-duty diesel trucks in China. Environ Pollut 262:114280
doi: 10.1016/j.envpol.2020.114280
Hu J, Zeng J et al (2018) Failure diagnosis and tolerant control method for hydrothermally aged SCR system by utilizing EKF observer and MRAC controller. Energy 156:103–121
doi: 10.1016/j.energy.2018.05.094
Hu S, Deng B et al (2021) Energy flow behavior and emission reduction of a turbo-charging and EGR non-road diesel engine equipped with DOC and DPF under NRTC (non-road transient cycle). Fuel 305:121571
doi: 10.1016/j.fuel.2021.121571
Jeon J, Lee JT et al (2016) Nitrogen compounds (NO, NO
doi: 10.1021/acs.energyfuels.6b01331
Jiang Y, Yang J et al (2018) Characterizing emission rates of regulated pollutants from model year 2012 + heavy-duty diesel vehicles equipped with DPF and SCR systems. Sci Total Environ 619–620:765–771
doi: 10.1016/j.scitotenv.2017.11.120
Joshi A (2020) Review of vehicle engine efficiency and emissions. SAE Int J Adv Curr Prac Mobil 2(5):2479–2507. https://doi.org/10.4271/2020-01-0352
doi: 10.4271/2020-01-0352
Jung Y, Shin YJ et al (2017) NOx and N2O emissions over a Urea-SCR system containing both V2O5-WO3/TiO2 and Cu-zeolite catalysts in a diesel engine. Chem Eng J 326:853–862
doi: 10.1016/j.cej.2017.06.020
Khobragade R, Singh SK et al (2019) Chemical composition of diesel particulate matter and its control. Catal Rev 61(4):447–515
doi: 10.1080/01614940.2019.1617607
Ko J, Si W et al (2016) Effect of active regeneration on time-resolved characteristics of gaseous emissions and size-resolved particle emissions from light-duty diesel engine. J Aerosol Sci 91:62–77
doi: 10.1016/j.jaerosci.2015.09.007
Kurien C (2019) review on post-treatment emission control technique by application of diesel oxidation catalysis and diesel particulate filtration. J Therm Eng 108–118. https://doi.org/10.18186/thermal.532252
Lao CT, Akroyd J et al (2020) Investigation of the impact of the configuration of exhaust after-treatment system for diesel engines. Appl Energy 267:114844
doi: 10.1016/j.apenergy.2020.114844
Lauren M, Karhu T, Niemi S, Laivola M et al (2020) Different methods to improve the exhaust gas temperature in modern stage V off-road diesel engine over transient emission cycles, SAE Technical Paper 2020–01–0903, 2020, https://doi.org/10.4271/2020-01-0903
Mattarelli E, Rinaldini C, Scrignoli F, Fregni P et al (2019) Potential of electrification applied to non-road diesel engines, SAE Technical Paper 2019–24–0202, 2019, https://doi.org/10.4271/2019-24-0202 .Potential of Electrification Applied to Non-Road Diesel Engines
Meng Z, Chen C et al (2020a) Particle emission characteristics of DPF regeneration from DPF regeneration bench and diesel engine bench measurements. Fuel 262:116589
doi: 10.1016/j.fuel.2019.116589
Meng Z, Li J et al (2020b) Experimental study on regeneration performance and particle emission characteristics of DPF with different inlet transition sections lengths. Fuel 262:116487
doi: 10.1016/j.fuel.2019.116487
Pirjola L, Rönkkö T et al (2017) Exhaust emissions of non-road mobile machine: real-world and laboratory studies with diesel and HVO fuels. Fuel 202:154–164
doi: 10.1016/j.fuel.2017.04.029
Quiros DC, Yoon S et al (2014) Measuring particulate matter emissions during parked active diesel particulate filter regeneration of heavy-duty diesel trucks. J Aerosol Sci 73:48–62
doi: 10.1016/j.jaerosci.2014.03.002
Rothe D, Knauer M et al (2015) Emissions during active regeneration of a diesel particulate filter on a heavy duty diesel engine: stationary tests. J Aerosol Sci 90:14–25
doi: 10.1016/j.jaerosci.2015.07.007
Russell A, Epling WS (2011) Diesel oxidation catalysts. Catal Rev 53(4):337–423
doi: 10.1080/01614940.2011.596429
Shin Y, Jung Y et al (2020) NOx abatement and N2O formation over urea-SCR systems with zeolite supported Fe and Cu catalysts in a nonroad diesel engine. Chem Eng J 381:122751
doi: 10.1016/j.cej.2019.122751
Smith JD, Ruehl C et al (2019) Real-time particulate emissions rates from active and passive heavy-duty diesel particulate filter regeneration. Sci Total Environ 680:132–139
doi: 10.1016/j.scitotenv.2019.04.447
Song X, Surenahalli H, Naber J, Parker G et al (2013) Experimental and modeling study of a diesel oxidation catalyst (DOC) under transient and CPF active regeneration conditions, SAE Technical Paper 2013–01–1046, 2013, https://doi.org/10.4271/2013-01-1046
Stadlbauer S, Waschl H et al (2014) SCR ammonia dosing control by a nonlinear model predictive controller. IFAC Proc Vol 47(3):3018–3023
doi: 10.3182/20140824-6-ZA-1003.02497
Tang W, Siani A, Chen F and Chen B (2019) On developing advanced catalysts systems to meet China new regulations, SAE Technical Paper 2019–01–0978, 2019, https://doi.org/10.4271/2019-01-0978
Wang F, Li Z et al (2016) An overview of non-road equipment emissions in China. Atmos Environ 132:283–289
doi: 10.1016/j.atmosenv.2016.02.046
Wei L, Yan F et al (2017) Nox conversion efficiency optimization based on NSGA-II and state-feedback nonlinear model predictive control of selective catalytic reduction system in diesel engine. Appl Energy 206:959–971
doi: 10.1016/j.apenergy.2017.08.223
Wihersaari H, Pirjola L et al (2020) Particulate emissions of a modern diesel passenger car under laboratory and real-world transient driving conditions. Environ Pollut 265:114948
doi: 10.1016/j.envpol.2020.114948
Yang Y, Fang J et al (2021) Influence of different thermal aging conditions on soot combustion with catalyst by thermogravimetric analysis. Materials 14(13):3647
doi: 10.3390/ma14133647
Yoon S, Quiros DC et al (2015) Characteristics of particle number and mass emissions during heavy-duty diesel truck parked active DPF regeneration in an ambient air dilution tunnel. Atmos Environ 122:58–64
doi: 10.1016/j.atmosenv.2015.09.032
Yu F, Li C et al (2020) Characterization of particulate smoke and the potential chemical fingerprint of non-road construction equipment exhaust emission in China. Sci Total Environ 723:137967
doi: 10.1016/j.scitotenv.2020.137967
Zhang M (2017) Particulate emissions from a China V heavy-duty diesel engine with ultra low sulfur diesel fuel and DOC+CDPF+SCR, SAE Technical Paper 2017–01–0914, 2017, https://doi.org/10.4271/2017-01-0914
Zhang Y, Lou D et al (2019) Experimental study on the emission characteristics of a non-road diesel engine equipped with different after-treatment devices. Environ Sci Pollut Res 26(26):26617–26627
doi: 10.1007/s11356-019-05839-y
Zhang Q, Yang L et al (2020) Emission characteristics and chemical composition of particulate matter emitted by typical non-road construction machinery. Atmos Pollut Res 11(4):679–685
doi: 10.1016/j.apr.2019.12.018
Zhong H, Tan J et al (2017) Effects of a diesel particulate filter on emission characteristics of a China II non-road diesel engine. Energy Fuels 31(9):9833–9839
doi: 10.1021/acs.energyfuels.7b00590