Direct Detection of Extracellular Vesicle miRNAs Using a Single-Step RT-qPCR Assay.
Bronchoalveolar lavage fluid (BALF)
Cost-effective method
EV-miRNAs
Extracellular vesicles (EVs)
Serum
Single-step RT-qPCR
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2022
2022
Historique:
entrez:
25
4
2022
pubmed:
26
4
2022
medline:
28
4
2022
Statut:
ppublish
Résumé
Extracellular vesicles (EVs) are biological carriers, and EV-associated miRNAs (EV-miRNAs) are considered as a novel biomarker in multiple diseases. Currently, the column-based purification method is used to purify miRNAs from EVs. However, this method of purification is complex, time-consuming, and expensive. Therefore, a simple and cost-effective single-step quantitative reverse transcription-polymerase chain reaction (RT-qPCR) method is required to detect the expression of EV-miRNAs. This chapter describes a protocol for directly analyzing the EV-miRNAs expression from mouse bronchoalveolar lavage fluid (BALF) and serum without going for an RNA isolation and purification step from EVs. It is an efficient method in several terms such as cost-wise, time, low expertise, and accuracy in results. This method may be helpful in diagnostic blood tests used in medical centers or research laboratories.
Identifiants
pubmed: 35467284
doi: 10.1007/978-1-0716-2341-1_10
doi:
Substances chimiques
Biomarkers
0
MicroRNAs
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
137-145Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL142758
Pays : United States
Organisme : NIAID NIH HHS
ID : R33 AI121644
Pays : United States
Informations de copyright
© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Yáñez-Mó M, Siljander PRM et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066. https://doi.org/10.3402/jev.v4.27066
doi: 10.3402/jev.v4.27066
pubmed: 25979354
Lee H, Li C et al (2019) Caveolin-1 selectively regulates microRNA sorting into microvesicles after noxious stimuli. J Exp Med 216:2202–2220. https://doi.org/10.1084/jem.20182313
doi: 10.1084/jem.20182313
pubmed: 31235510
pmcid: 6719430
Tkach M, Théry C (2016) Communication by extracellular vesicles: where we are and where we need to go. Cell 164:1226–1232. https://doi.org/10.1016/j.cell.2016.01.043
doi: 10.1016/j.cell.2016.01.043
pubmed: 26967288
Lee H, Groot M et al (2019) Identification of miRNA-rich vesicles in bronchoalveolar lavage fluid: insights into the function and heterogeneity of extracellular vesicles. J Control Release 294:43–52. https://doi.org/10.1016/j.jconrel.2018.12.008
doi: 10.1016/j.jconrel.2018.12.008
pubmed: 30529727
Andaloussi SEL, Mäger I et al (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357. https://doi.org/10.1038/nrd3978
doi: 10.1038/nrd3978
Wang H, Peng R et al (2018) Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clin Epigenetics 10:59. https://doi.org/10.1186/s13148-018-0492-1
doi: 10.1186/s13148-018-0492-1
pubmed: 29713393
pmcid: 5913875
Guay C, Regazzi R (2017) Exosomes as new players in metabolic organ cross-talk. Diabetes Obes Metab 19(Suppl 1):137–146. https://doi.org/10.1111/dom.13027
doi: 10.1111/dom.13027
pubmed: 28880477
Maas SLN, Breakefield XO et al (2017) Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 27:172–188. https://doi.org/10.1016/j.tcb.2016.11.003
doi: 10.1016/j.tcb.2016.11.003
pubmed: 27979573
Lee H, Zhang D et al (2018) Functional evidence of pulmonary extracellular vesicles in infectious and noninfectious lung inflammation. J Immunol 201:1500–1509. https://doi.org/10.4049/jimmunol.1800264
doi: 10.4049/jimmunol.1800264
pubmed: 29997122
Zhang D, Lee H et al (2018) Exosome-mediated small RNA delivery: a novel therapeutic approach for inflammatory lung responses. Mol Ther 26:2119–2130. https://doi.org/10.1016/j.ymthe.2018.06.007
doi: 10.1016/j.ymthe.2018.06.007
pubmed: 30005869
pmcid: 6127502
Pattarayan D, Thimmulappa RK et al (2018) Diagnostic potential of extracellular microRNA in respiratory diseases. Clin Rev Allergy Immunol 54:480–492. https://doi.org/10.1007/s12016-016-8589-9
doi: 10.1007/s12016-016-8589-9
pubmed: 27677501
Reid G, Kirschner MB et al (2011) Circulating microRNAs: association with disease and potential use as biomarkers. Crit Rev Oncol Hematol 80:193–208. https://doi.org/10.1016/j.critrevonc.2010.11.004
doi: 10.1016/j.critrevonc.2010.11.004
pubmed: 21145252
Lee H, He X et al (2020) Single-step RT-qPCR for detection of extracellular vesicle microRNAs invivo: a time- and cost-effective method. Am J Physiol Lung Cell Mol Physiol 318:L742–L749. https://doi.org/10.1152/ajplung.00430.2019
doi: 10.1152/ajplung.00430.2019
pubmed: 32073880
pmcid: 7191479
Chen C, Ridzon DA et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179. https://doi.org/10.1093/nar/gni178
doi: 10.1093/nar/gni178
pubmed: 16314309
pmcid: 1292995