Direct Detection of Extracellular Vesicle miRNAs Using a Single-Step RT-qPCR Assay.

Bronchoalveolar lavage fluid (BALF) Cost-effective method EV-miRNAs Extracellular vesicles (EVs) Serum Single-step RT-qPCR

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2022
Historique:
entrez: 25 4 2022
pubmed: 26 4 2022
medline: 28 4 2022
Statut: ppublish

Résumé

Extracellular vesicles (EVs) are biological carriers, and EV-associated miRNAs (EV-miRNAs) are considered as a novel biomarker in multiple diseases. Currently, the column-based purification method is used to purify miRNAs from EVs. However, this method of purification is complex, time-consuming, and expensive. Therefore, a simple and cost-effective single-step quantitative reverse transcription-polymerase chain reaction (RT-qPCR) method is required to detect the expression of EV-miRNAs. This chapter describes a protocol for directly analyzing the EV-miRNAs expression from mouse bronchoalveolar lavage fluid (BALF) and serum without going for an RNA isolation and purification step from EVs. It is an efficient method in several terms such as cost-wise, time, low expertise, and accuracy in results. This method may be helpful in diagnostic blood tests used in medical centers or research laboratories.

Identifiants

pubmed: 35467284
doi: 10.1007/978-1-0716-2341-1_10
doi:

Substances chimiques

Biomarkers 0
MicroRNAs 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

137-145

Subventions

Organisme : NHLBI NIH HHS
ID : R01 HL142758
Pays : United States
Organisme : NIAID NIH HHS
ID : R33 AI121644
Pays : United States

Informations de copyright

© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Yáñez-Mó M, Siljander PRM et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066. https://doi.org/10.3402/jev.v4.27066
doi: 10.3402/jev.v4.27066 pubmed: 25979354
Lee H, Li C et al (2019) Caveolin-1 selectively regulates microRNA sorting into microvesicles after noxious stimuli. J Exp Med 216:2202–2220. https://doi.org/10.1084/jem.20182313
doi: 10.1084/jem.20182313 pubmed: 31235510 pmcid: 6719430
Tkach M, Théry C (2016) Communication by extracellular vesicles: where we are and where we need to go. Cell 164:1226–1232. https://doi.org/10.1016/j.cell.2016.01.043
doi: 10.1016/j.cell.2016.01.043 pubmed: 26967288
Lee H, Groot M et al (2019) Identification of miRNA-rich vesicles in bronchoalveolar lavage fluid: insights into the function and heterogeneity of extracellular vesicles. J Control Release 294:43–52. https://doi.org/10.1016/j.jconrel.2018.12.008
doi: 10.1016/j.jconrel.2018.12.008 pubmed: 30529727
Andaloussi SEL, Mäger I et al (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357. https://doi.org/10.1038/nrd3978
doi: 10.1038/nrd3978
Wang H, Peng R et al (2018) Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clin Epigenetics 10:59. https://doi.org/10.1186/s13148-018-0492-1
doi: 10.1186/s13148-018-0492-1 pubmed: 29713393 pmcid: 5913875
Guay C, Regazzi R (2017) Exosomes as new players in metabolic organ cross-talk. Diabetes Obes Metab 19(Suppl 1):137–146. https://doi.org/10.1111/dom.13027
doi: 10.1111/dom.13027 pubmed: 28880477
Maas SLN, Breakefield XO et al (2017) Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 27:172–188. https://doi.org/10.1016/j.tcb.2016.11.003
doi: 10.1016/j.tcb.2016.11.003 pubmed: 27979573
Lee H, Zhang D et al (2018) Functional evidence of pulmonary extracellular vesicles in infectious and noninfectious lung inflammation. J Immunol 201:1500–1509. https://doi.org/10.4049/jimmunol.1800264
doi: 10.4049/jimmunol.1800264 pubmed: 29997122
Zhang D, Lee H et al (2018) Exosome-mediated small RNA delivery: a novel therapeutic approach for inflammatory lung responses. Mol Ther 26:2119–2130. https://doi.org/10.1016/j.ymthe.2018.06.007
doi: 10.1016/j.ymthe.2018.06.007 pubmed: 30005869 pmcid: 6127502
Pattarayan D, Thimmulappa RK et al (2018) Diagnostic potential of extracellular microRNA in respiratory diseases. Clin Rev Allergy Immunol 54:480–492. https://doi.org/10.1007/s12016-016-8589-9
doi: 10.1007/s12016-016-8589-9 pubmed: 27677501
Reid G, Kirschner MB et al (2011) Circulating microRNAs: association with disease and potential use as biomarkers. Crit Rev Oncol Hematol 80:193–208. https://doi.org/10.1016/j.critrevonc.2010.11.004
doi: 10.1016/j.critrevonc.2010.11.004 pubmed: 21145252
Lee H, He X et al (2020) Single-step RT-qPCR for detection of extracellular vesicle microRNAs invivo: a time- and cost-effective method. Am J Physiol Lung Cell Mol Physiol 318:L742–L749. https://doi.org/10.1152/ajplung.00430.2019
doi: 10.1152/ajplung.00430.2019 pubmed: 32073880 pmcid: 7191479
Chen C, Ridzon DA et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179. https://doi.org/10.1093/nar/gni178
doi: 10.1093/nar/gni178 pubmed: 16314309 pmcid: 1292995

Auteurs

Ayyanar Sivanantham (A)

Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA, USA.

Heedoo Lee (H)

Department of Biology and Chemistry, Changwon National University, Changwon, Korea.

Yang Jin (Y)

Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA, USA. yjin1@bu.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
C-Reactive Protein Humans Biomarkers Inflammation
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH