Risk of glaucoma after vitreoretinal surgery - Findings from a population-based cohort study.
epidemiology
glaucoma
population-based study
vitrectomy
Journal
Acta ophthalmologica
ISSN: 1755-3768
Titre abrégé: Acta Ophthalmol
Pays: England
ID NLM: 101468102
Informations de publication
Date de publication:
Sep 2022
Sep 2022
Historique:
revised:
11
04
2022
received:
08
02
2022
accepted:
18
04
2022
pubmed:
27
4
2022
medline:
12
8
2022
entrez:
26
4
2022
Statut:
ppublish
Résumé
To investigate the association between different types of vitrectomy and risk of different types of glaucoma and to determine the effect of systemic medication and diabetes status on this risk. A population-based nested case-control study included individuals of age ≥ 18 years who had undergone single vitrectomy, vitrectomy with retinal procedure, or combined phaco-vitrectomy between 2001 and 2010. End of follow-up was 2017. Odds ratio (OR) for the development of glaucoma after different types of vitrectomy and 95% confidence interval (CI) were based on conditional logistic regression models. For every glaucoma case, five controls were matched by age, sex, start of follow-up year, and hospital district. The cohort (n = 37 687), of which 52.8% was female, consisted of 6552 individuals diagnosed with glaucoma and 31 135 controls matched by age, sex, and hospital district. Vitrectomy was performed on 103 eyes in the glaucoma group and 158 eyes in the control group. As regards the risk of any glaucoma, the risk was lowest in eyes that underwent combined phaco-vitrectomy (OR: 2.7, 95% CI: 1.8-4.1), followed by single vitrectomy (OR: 3.15, 95% CI: 2.1-4.8), and highest in eyes that underwent vitrectomy with retinal procedure (OR: 4.5, 95% CI: 2.7-7.4). Diabetes had no effect (OR: 0.96, 95% CI: 0.92-1.01), but 5-year systemic statin use slightly decreased glaucoma risk (OR: 0.86, 95% CI: 0.77-0.97). Vitreoretinal surgery was associated with an increased glaucoma risk; the risk being related to the complexity of vitrectomy. Long-term systemic statin therapy may decrease glaucoma risk, while diabetes had no association.
Substances chimiques
Hydroxymethylglutaryl-CoA Reductase Inhibitors
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
665-672Subventions
Organisme : Jari Haukka
ID : University of Helsinki grant
Informations de copyright
© 2022 The Authors. Acta Ophthalmologica published by John Wiley & Sons Ltd on behalf of Acta Ophthalmologica Scandinavica Foundation.
Références
Akino K, Nagai N, Watanabe K et al. (2020): Risk of newly developing visual field defect and neurodegeneration after pars plana vitrectomy for idiopathic epiretinal membrane. Br J Ophthalmol 105: 1683-1687.
Aktas Z, Bölük CE & Gurelik G (2021): Silicone oil droplets in the schlemm's canal: a surprise during prolene hemi-gonioscopy-assisted transluminal trabeculotomy (Hemi-GATT). J Curr Glaucoma Pract 15: 40-43.
Aptel F, Colin C, Kaderli S, Deloche C, Bron AM, Stewart MW, Chiquet C & OSIRIS Group (2017): Management of postoperative inflammation after cataract and complex ocular surgeries: a systematic review and Delphi survey. Br J Ophthalmol 101: 1-10.
Bayat AH & Akpolat C (2021): The change of anterior chamber angle parameters after cataract surgery in diabetic patients. Ther Adv Ophthalmol 13: 25158414211034717.
Biesheuvel CJ, Vergouwe Y, Oudega R, Hoes AW, Grobbee DE & Moons KG (2008): Advantages of the nested case-control design in diagnostic research. BMC Med Res Methodol 8: 48.
Chang S (2006): LXII Edward Jackson lecture: open angle glaucoma after vitrectomy. Am J Ophthalmol 141: 1033-1043.
Choi SW, Lee CE & Kim YC (2020): Intraocular pressure change with face-down positioning after macular hole surgery. PloS One 15: e0242567.
Coca-Prados M (2014): The blood-aqueous barrier in health and disease. J Glaucoma 23(8 Suppl 1): S36-S38.
Corvi F, Viola F, Germinetti F et al. (2021): Functional and anatomic changes between early postoperative recovery and long-term follow-up after combined epiretinal and internal limiting membrane peeling. Can J Ophthalmol. https://doi.org/10.1016/j.jcjo.2021.06.017. Epub ahead of print.
Dammak A, Huete-Toral F, Carpena-Torres C, Martin-Gil A, Pastrana C & Carracedo G (2021): From oxidative stress to inflammation in the posterior ocular diseases: diagnosis and treatment. Pharmaceutics 13: 1376.
Díaz-Valverde A & Wu L (2018): To peel or not to peel the internal limiting membrane in idiopathic epiretinal membranes. Retina 38(Suppl 1): S5-S11.
El-Amir AN, Keenan TD, Abu-Bakra M, Tanner V, Yeates D & Goldacre MJ (2009): Trends in rates of retinal surgery in England from 1968 to 2004: studies of hospital statistics. Br J Ophthalmol 93: 1585-1590.
Feldman-Billard S & Dupas B (2021): Eye disorders other than diabetic retinopathy in patients with diabetes. Diabetes Metab 47: 101279.
Ferrer E (2006): Trabecular meshwork as a new target for the treatment of glaucoma. Drug News Perspect 19: 151-158.
Gong H, Ren J, Zheng B, Huang X, Liao Y, Zhou Y & Lin M (2021): The profile of secondary glaucoma in China: a study of over 10 000 patients. J Glaucoma 30: 895-901.
Hayreh SS (1978): Fluids in the anterior part of the optic nerve in health and disease. Surv Ophthalmol 23: 1-25.
Inyushin M, Zayas-Santiago A, Rojas L, Kucheryavykh Y & Kucheryavykh L (2019): Platelet-generated amyloid beta peptides in Alzheimer's disease and glaucoma. Histol Histopathol 34: 843-856.
Karlstetter M, Scholz R, Rutar M, Wong WT, Provis JM & Langmann T (2015): Retinal microglia: just bystander or target for therapy? Prog Retina Eye Res 45: 30-57.
Kocatürk T, Zengin M, Cakmak H, Evliçoglu GE, Dündar SO, Omürlü IK, Unübol M & Güney E (2014): The ocular biometric differences of diabetic patients. Eur J Ophthalmol 24: 786-789.
Koreen L, Yoshida N, Escariao P et al. (2012): Incidence of, risk factors for, and combined mechanism of late-onset open-angle glaucoma after vitrectomy. Retina 32: 160-167.
Loukovaara S, Nurkkala H, Tamene F, Gucciardo E, Liu X, Repo P, Lehti K & Varjosalo M (2015): Quantitative proteomics analysis of vitreous humor from diabetic retinopathy patients. J Prot Res 14: 5131-5143.
Loukovaara S, Sahanne S, Takala A & Haukka J (2018): Statin use and vitreoretinal surgery: Findings from a Finnish population-based cohort study. Acta Ophthalmol 96: 442-451.
Luo C, Yang X, Kain AD, Powell DW, Kuehn MH & Tezel G (2010): Glaucomatous tissue stress and the regulation of immune response through glial Toll-like receptor signaling. Invest Ophthalmol Vis Sci 51: 5697-5707.
Mansberger SL, Gordon MO, Jampel H et al. (2012): Reduction in intraocular pressure after cataract extraction: the Ocular Hypertension Treatment Study. Ophthalmology 119: 1826-1831.
Mansukhani SA, Barkmeier AJ, Bakri SJ et al. (2018): The risk of primary open-angle glaucoma following vitreoretinal surgery-a population-based study. Am J Ophthalmol 193: 143-155.
Masis Solano M & Lin SC (2018): Cataract, phacoemulsification and intraocular pressure: Is the anterior segment anatomy the missing piece of the puzzle? Prog Retin Eye Res 64: 77-83.
McCann P, Hogg RE, Fallis R & Azuara-Blanco A (2016): the effect of statins on intraocular pressure and on the incidence and progression of glaucoma: a systematic review and meta-analysis. Invest Ophthalmol Vis Sci 57: 2729-2748.
Miele A, Govetto A, Fumagalli C, Donati S, Biagini I, Azzolini C, Rizzo S & Virgili G (2018): Ocular hypertension and glaucoma following vitrectomy: a systematic review. Retina 38: 883-890.
Nicolai M, Lassandro N, Franceschi A, Rosati A, De Turris S, Pelliccioni P, Pirani V & Mariotti C (2020): Intraocular pressure rise linked to silicone oil in retinal surgery: a review. Vision (Basel) 4: 36.
Niskanen L, Partonen T, Auvinen A & Haukka J (2020): Trends and predictors in all-cause and cause-specific mortality in diabetic and reference populations during 21 years of follow-up. J Epidemiol Community Health 74: 950-956.
Öhman T, Gawriyski L, Miettinen S, Varjosalo M & Loukovaara S (2021): Molecular pathogenesis of rhegmatogenous retinal detachment. Sci Rep 11: 966.
Öhman T, Tamene F, Goos H, Loukovaara S & Varjosalo M (2018): Systems pathology analysis identifies neurodegenerative nature of age-related vitreoretinal interface diseases. Aging cell. 17: e12809.
Pastor JC, Rojas J, Pastor-Idoate S, Di Lauro S, Gonzalez-Buendia L & Delgado-Tirado S (2016): Proliferative vitreoretinopathy: a new concept of disease pathogenesis and practical consequences. Prog Ret Eye Res 51: 125-155.
R Core Team (2019): R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Availble at: https://www.R-project.org/.
Rodríguez Villanueva J, Martín Esteban J & Rodríguez Villanueva LJ (2020): Retinal cell protection in ocular excitotoxicity diseases. possible alternatives offered by microparticulate drug delivery systems and future prospects. Pharmaceutics 12: 94.
Siegfried CJ & Shui YB (2019): Intraocular oxygen and antioxidant status: new insights on the effect of vitrectomy and glaucoma pathogenesis. Am J Ophthalmol 203: 12-25.
Stein JD, Newman-Casey PA, Talwar N, Nan B, Richards JE & Musch DC (2012): The relationship between statin use and open-angle glaucoma. Ophthalmology 119: 2074-2081.
Tezel G (2008): TNF-alpha signaling in glaucomatous neurodegeneration. Progr Brain Res 173: 409-421.
Tezel G, Yang X, Luo C et al. (2010): Oxidative stress and the regulation of complement activation in human glaucoma. Invest Ophthalmol Visual Sci 51: 5071-5082.
Tham YC, Li X, Wong TY, Quigley HA, Aung T & Cheng CY (2014): Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121: 2081-2090.
Tuuminen R, Haukka J & Loukovaara S (2015): Statins in rhegmatogenous retinal detachment are associated with low intravitreal angiopoietin-2, VEGF and MMP-2 levels, and improved visual acuity gain in vitrectomized patients. Graefes Arch Clin Exp Ophthalmol 253: 1685-1693.
Weinreb RN, Aung T & Medeiros FA (2014): The pathophysiology and treatment of glaucoma: a review. JAMA 311: 1901-1911.
Williams PA, Marsh-Armstrong N & Howell GR (2017): Neuroinflammation in glaucoma: a new opportunity. Exp Eye Res 157: 20-27.
Wostyn P (2021): Do normal-tension and high-tension glaucoma result from brain and ocular glymphatic system disturbances, respectively? Eye 35: 2905-2906.
Wostyn P, Van Dam D, Audenaert K, Killer HE, De Deyn PP & De Groot V (2015): A new glaucoma hypothesis: a role of glymphatic system dysfunction. Fluids Barriers CNS 12: 16.
Wubben TJ, Talwar N, Blachley TS, Gardner TW, Johnson MW, Lee PP & Stein JD (2016): Rates of vitrectomy among enrollees in a United States Managed Care Network, 2001-2012. Ophthalmology 123: 590-598.