Ferula assa-foetida oleo gum resin ethanolic extract alleviated the pancreatic changes and antioxidant status in streptozotocin-induced diabetic rats: A biochemical, histopathological, and ultrastructural study.


Journal

Journal of food biochemistry
ISSN: 1745-4514
Titre abrégé: J Food Biochem
Pays: United States
ID NLM: 7706045

Informations de publication

Date de publication:
08 2022
Historique:
revised: 11 02 2022
received: 21 10 2021
accepted: 25 03 2022
pubmed: 28 4 2022
medline: 11 8 2022
entrez: 27 4 2022
Statut: ppublish

Résumé

The current research examines the effects of administration of 150 and 250 mg/kg body weight/day of ethanolic Ferula assa-foetida L. oleo gum resin extract (FAE) for 42 days in streptozotocin-induced diabetes in rats. On day 42, all rats were euthanized; HOMA-β, HOMA-IR, and QUICKI levels in pancreas were examined histopathologically and ultrastructurally . Low-dose FAE (150 mg/kg) treatment resulted in significant improvement in serum glucose, insulin and superoxide dismutase, glutathione, and catalase levels (p < .05). It also improved β-cell function, restored pancreatic β-cells, and reduced insulin resistance compared to the diabetic control rats. Necrotic and degenerative alterations in the islets, pyknotic β-cell nuclei, β-cell degranulation, reduced islet cellular density, and significant vacuolation were found in the islets of STZ-diabetic control group ratsby the histomorphological and ultrastructural examination. The pancreatic histomorphology of low dose of FAE-treated diabetic rats showed remarkable improvements in the islets, such as the β-cell number and the area of the pancreatic islets. PRACTICAL APPLICATIONS: The experiment revealed that Ferula assa-foetida L. may exert antihyperglycemic activity in STZ diabetes via β-cell regeneration and its high antioxidant capacity. This work elucidates the role of Ferula assa-foetida L. in diabetes management. Ferula assa-foetida L. gum extract improved the morphological changes of the diabetic pancreas and stimulated the regeneration of the β cells. The findings demonstrated positive results for the long-term cure of diabetes. Additionally, this study showed the potential of isolating nutraceuticals for the development of medications.

Identifiants

pubmed: 35474229
doi: 10.1111/jfbc.14191
doi:

Substances chimiques

Antioxidants 0
Plant Extracts 0
Resins, Plant 0
Ethanol 3K9958V90M
Streptozocin 5W494URQ81

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e14191

Subventions

Organisme : Ferdowsi University of Mashhad

Informations de copyright

© 2022 Wiley Periodicals LLC.

Références

Abu-Zaiton, A. S. (2010). Anti-diabetic activity of Ferula assafoetida extract in normal and alloxan-induced diabetic rats. Pakistan Journal of Biological Sciences, 13(2), 97-100. https://doi.org/10.3923/pjbs.2010.97.100
Adeghate, E., & Ponery, A. (2002). GABA in the endocrine pancreas: Cellular localization and function in normal and diabetic rats. Tissue and Cell, 34(1), 1-6. https://doi.org/10.1054/tice.2002.0217
Ahmad, M., Khan, M. A., Arshad, M., & Zafar, M. (2004). Ethnophytotherapical approaches for the treatment of diabetes by the local inhabitants of district Attock (Pakistan). Ethnobotanical leaflets, 2004(1), 7.
Ahmadvand, H., Amiri, H., Dehghani Elmi, Z., & Bagheri, S. (2014). Chemical composition and antioxidant properties of Ferula assa-foetida leaves essential oil. Iranian Journal of Pharmacology and Therapeutics, 12(2), 52-50.
Aiman, R. (1970). Recent research in indigenous anti-diabetic medicinal plants, an overall assessment. Indian Journal of Physiology and Pharmacology, 14(2), 65-76.
Alezandro, M. R., Granato, D., & Genovese, M. I. (2013). Jaboticaba (Myrciaria jaboticaba [Vell.] Berg), a Brazilian grape-like fruit, improves plasma lipid profile in streptozotocin-mediated oxidative stress in diabetic rats. Food Research International, 54(1), 650-659. https://doi.org/10.1016/j.foodres.2013.07.041
Ara, F., Tripathy, A., Ghosh, P., & Ghosh, D. (2020). Correction of glycemic and oxidative stress sensors in streptozotocin induced diabetic rat model: Impact of dose dependent study of n-butanol solvent fraction of hydro-methanol extract of banana flower (Musa balbisiana). Journal of Food Biochemistry, 44(10), e13386. https://doi.org/10.1111/jfbc.13386
Balasubashini, M. S., Rukkumani, R., & Menon, V. (2003). Protective effects of ferulic acid on hyperlipidemic diabetic rats. Acta Diabetologica, 40(3), 118-122. https://doi.org/10.1007/s00592-003-0099-6
Bermudez-Pirela, V. J., Cano, C., Medina, M. T., Souki, A., Lemus, M. A., Leal, E. M., & Bermúdez-Arias, F. (2007). Metformin plus low-dose glimeperide significantly improves homeostasis model assessment for insulin resistance (HOMAIR) and β-cell function (HOMAβ-cell) without hyperinsulinemia in patients with type 2 diabetes mellitus. American Journal of Therapeutics, 14(2), 194-202. https://doi.org/10.1097/01.pap.0000249909.54047.0e
Bolkent, Ş., Yanardağ, R., Tabakoğlu-Oğuz, A., & Özsoy-Saçan, Ö. (2000). Effects of chard (Beta vulgaris L. var. cicla) extract on pancreatic B cells in streptozotocin-diabetic rats: a morphological and biochemical study. Journal of Ethnopharmacology, 73(1-2), 251-259. https://doi.org/10.1016/S0378-8741(00)00328-7
Brenna, O., Qvigstad, G., Brenna, E., & Waldum, H. (2003). Cytotoxicity of streptozotocin on neuroendocrine cells of the pancreas and the gut. Digestive Diseases and Sciences, 48(5), 906-910. https://doi.org/10.1023/A:1023043411483
Chandran, R., George, B. P., Abrahamse, H., & Parimelazhagan, T. (2017). Therapeutic effects of Syzygium mundagam bark methanol extract on type-2 diabetic complications in rats. Biomedicine & Pharmacotherapy, 95, 167-174. https://doi.org/10.1016/j.biopha.2017.08.061
Cnop, M., Welsh, N., Jonas, J.-C., Jörns, A., Lenzen, S., & Eizirik, D. L. (2005). Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes: Many differences, few similarities. Diabetes, 54(2), S97-S107. https://doi.org/10.2337/diabetes.54.suppl_2.S97
Coskun, O., Kanter, M., Korkmaz, A., & Oter, S. (2005). Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharmacological Research, 51(2), 117-123. https://doi.org/10.1016/j.phrs.2004.06.002
Davies, M., Tringham, J., Troughton, J., & Khunti, K. (2004). Prevention of type 2 diabetes mellitus. A review of the evidence and its application in a UKsetting. Diabetic Medicine, 21(5), 403-414. https://doi.org/10.1111/j.1464-5491.2004.01176.x
Dehpour, A. A., Ebrahimzadeh, M. A., Fazel, N. S., & Mohammad, N. S. (2009). Antioxidant activity of the methanol extract of Ferula assafoetida and its essential oil composition. Grasasy Aceites, 60(4), 405-412. https://doi.org/10.3989/gya.010109
Ding, Y., Zhang, Z., Dai, X., Jiang, Y., Bao, L., Li, Y., & Li, Y. (2013). Grape seed proanthocyanidins ameliorate pancreatic beta-cell dysfunction and death in low-dose streptozotocin-and high-carbohydrate/high-fat diet-induced diabetic rats partially by regulating endoplasmic reticulum stress. Nutrition & metabolism, 10(1), 1-12. https://doi.org/10.1186/1743-7075-10-51
Dixon, J. B., Dixon, A. F., & O'Brien, P. E. (2003). Improvements in insulin sensitivity and β-cell function (HOMA) with weight loss in the severely obese. Diabetic Medicine, 20(2), 127-134. https://doi.org/10.1046/j.1464-5491.2003.00889.x
Donath, M., & Halban, P. A. (2004). Decreased beta-cell mass in diabetes: Significance, mechanisms and therapeutic implications. Diabetologia, 47(3), 581-589. https://doi.org/10.1007/s00125-004-1336-4
Fayed, T. (1998). Effect of Nigella sativa or fish oil supplementation in alloxan diabetic rats. Journal of Union of Arab Biologists, 9, 237-250.
Garimella, S., Seshayamma, V., Rao, H. J., Kumar, S., Kumar, U., & Saheb, S. H. (2016). Effect of metformin on lipid profile of type II diabetes. International Journal of Integrative Medical Sciences, 3(11), 449-453. https://doi.org/10.16965/ijims.2016.155
Gupta, S., Kataria, M., Gupta, P., Murganandan, S., & Yashroy, R. (2004). Protective role of extracts of neem seeds in diabetes caused by streptozotocin in rats. Journal of Ethnopharmacology, 90(2-3), 185-189. https://doi.org/10.1016/j.jep.2003.09.024
Hermans, M. P., & Lambert, M. J. (2002). HOMA-modelling of insulin sensitivity and β-cell function in anorexia nervosa. European Eating Disorders Review: The Professional Journal of the Eating Disorders Association, 10(1), 41-50. https://doi.org/10.1002/erv.415
Hofer, O., Widhalm, M., & Greger, H. (1984). Circular dichroism of sesquiterpene-umbelliferone ethers and structure elucidation of a new derivative isolated from the gum resin “Asa Foetida”. Monatshefte für Chemie/Chemical Monthly, 115(10), 1207-1218. https://doi.org/10.1007/BF00809352
Hong, E. G., Noh, H. L., Lee, S. K., Chung, Y. S., Lee, K. W., & Kim, H. M. (2002). Insulin and glucagon secretions, and morphological change of pancreatic islets in OLETF rats, a model of type 2 diabetes mellitus. Journal of Korean Medical Science, 17(1), 34-40. https://doi.org/10.3346/jkms.2002.17.1.34
Hundal, R. S., & Inzucchi, S. E. (2003). Metformin. Drugs, 63(18), 1879-1894. https://doi.org/10.2165/00003495-200363180-00001
Iranshahi, M., & Alizadeh, M. (2012). Antihyperglycemic effect of Asafoetida (Ferula assafoetida oleo-gum-resin) in streptozotocin-induced diabetic rats. World Applied Sciences Journal, 17(2), 157-162.
Iranshahy, M., & Iranshahi, M. (2011). Traditional uses, phytochemistry and pharmacology of asafoetida (Ferula assa-foetida oleo-gum-resin)-A review. Journal of Ethnopharmacology, 134(1), 1-10. https://doi.org/10.1016/j.jep.2010.11.067
Iun, N., & Avezov, G. (1992). The efficacy of quercetin in alloxan diabetes. Eksperimental'naia i Klinicheskaia Farmakologiia, 55(1), 42-44.
Kamalakkannan, N., & Prince, P. S. M. (2006). Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic wistar rats. Basic & Clinical Pharmacology & Toxicology, 98(1), 97-103. https://doi.org/10.1111/j.1742-7843.2006.pto_241.x
Katalinic, V., Milos, M., Kulisic, T., & Jukic, M. (2006). Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chemistry, 94(4), 550-557. https://doi.org/10.1016/j.foodchem.2004.12.004
Kavoosi, G., & Rowshan, V. (2013). Chemical composition, antioxidant and antimicrobial activities of essential oil obtained from Ferula assa-foetida oleo-gum-resin: Effect of collection time. Food Chemistry, 138(4), 2180-2187. https://doi.org/10.1016/j.foodchem.2012.11.131
Kumar, V., Ahmed, D., Anwar, F., Ali, M., & Mujeeb, M. (2013). Enhanced glycemic control, pancreas protective, antioxidant and hepatoprotective effects by umbelliferon-α-D-glucopyranosyl-(2 I→ 1 II)-α-D-glucopyranoside in streptozotocin induced diabetic rats. Springerplus, 2(1), 1-20. https://doi.org/10.1186/2193-1801-2-639
Latifi, E., Mohammadpour, A. A., Fathi, B., & Nourani, H. (2019). Antidiabetic and antihyperlipidemic effects of ethanolic Ferula assa-foetida oleo-gum-resin extract in streptozotocin-induced diabetic wistar rats. Biomedicine & Pharmacotherapy, 110, 197-202. https://doi.org/10.1016/j.biopha.2018.10.152
Lavle, N., Shukla, P., & Panchal, A. (2016). Role of flavonoids and saponins in the treatment of Diabetes mellitus. Journal of Pharmaceutical Science and Bioscientific Research, 6(4), 535-541.
Lenzen, S. (2008). Oxidative stress: The vulnerable β-cell. Biochemical Society Transactions, 36(3), 343-347. https://doi.org/10.1042/BST0360343
Madhuri, K., & Naik, P. R. (2017). Ameliorative effect of borneol, a natural bicyclic monoterpene against hyperglycemia, hyperlipidemia and oxidative stress in streptozotocin-induced diabetic Wistar rats. Biomedicine & Pharmacotherapy, 96, 336-347. https://doi.org/10.1016/j.biopha.2017.09.122
Maritim, A., Sanders, A., & Watkins, J., III. (2003). Diabetes, oxidative stress, and antioxidants: A review. Journal of Biochemical and Molecular Toxicology, 17(1), 24-38. https://doi.org/10.1002/jbt.10058
Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47(3), 469-474.
McDonald, L. (1969). Veterinary endocrinology and reproduction. Lea & Febiger.
Mitchell, R. S., Kumar, V., Abbas, A. K., & Fausto, N. (2007). Robbins basic pathology (Vol. 8, pp. 72-79). Saunders.
Mitra, D., Tripathy, A., & Ghosh, D. (2020). Antidiabetic and antioxidative efficacy of the constituents present in the fraction solvents of Curcuma amada rhizomes: An experimental study on the diabetic rat model. Journal of Food Biochemistry, 44(3), e13154. https://doi.org/10.1111/jfbc.13154
Mohandas, J., Marshall, J. J., Duggin, G. G., Horvath, J. S., & Tiller, D. J. (1984). Low activities of glutathione-related enzymes as factors in the genesis of urinary bladder cancer. Cancer Research, 44(11), 5086-5091.
Nabavi, S., Ebrahimzadeh, M., Nabavi, S., Eslami, B., & Dehpour, A. (2011). Antioxidant and antihaemolytic activities of Ferula foetida regel (Umbelliferae). European Review for Medical and Pharmacological Sciences, 15(2), 157-164.
Narasimhan, A., Chinnaiyan, M., & Karundevi, B. (2015). Ferulic acid exerts its antidiabetic effect by modulating insulin-signalling molecules in the liver of high-fat diet and fructose-induced type-2 diabetic adult male rat. Applied Physiology, Nutrition, and Metabolism, 40(8), 769-781. https://doi.org/10.1139/apnm-2015-0002
Niedowicz, D. M., & Daleke, D. L. (2005). The role of oxidative stress in diabetic complications. Cell Biochemistry and Biophysics, 43(2), 289-330. https://doi.org/10.1385/CBB:43:2:289
Ohnishi, M., Matuo, T., Tsuno, T., Hosoda, A., Nomura, E., Taniguchi, H., & Morishita, H. (2004). Antioxidant activity and hypoglycemic effect of ferulic acid in STZ-induced diabetic mice. BioFactors, 21(1-4), 315-319.
Osawa, T., & Kato, Y. (2005). Protective role of antioxidative food factors in oxidative stress caused by hyperglycemia. Annals of the New York Academy of Sciences, 1043(1), 440-451. https://doi.org/10.1196/annals.1333.050
Pinent, M., Castell, A., Baiges, I., Montagut, G., Arola, L., & Ardévol, A. (2008). Bioactivity of flavonoids on insulin-secreting cells. Comprehensive Reviews in Food Science and Food Safety, 7(4), 299-308. https://doi.org/10.1111/j.1541-4337.2008.00048.x
Pons, P., & Aoki, A. (1995). Differential proliferation of somatostatin and glucagon cells in rat pancreatic islets submitted to various stimuli. Annals of Anatomy-Anatomischer Anzeiger, 177(3), 221-227. https://doi.org/10.1016/S0940-9602(11)80189-5
Rajasekaran, M., & Kalaichelvan, S. (2014). Antioxidative role of Costus pictus D. DON in hyperglycemic rats administered with alloxon. Journal of Pharmaceutical Sciences and Research, 6(1), 24-28.
Rifaai, R., El-Tahawy, N., Saber, E. A., & Ahmed, R. (2012). Effect of quercetin on the endocrine pancreas of the experimentally induced diabetes in male albino rats: a histological and immunohistochemical study. Diabetes & Metabolism Journal, 3(182), 2. https://doi.org/10.4172/2155-6156.1000182
Sellamuthu, P. S., Arulselvan, P., Muniappan, B. P., Fakurazi, S., & Kandasamy, M. (2013). Mangiferin from Salacia chinensis prevents oxidative stress and protects pancreatic β-cells in streptozotocin-induced diabetic rats. Journal of Medicinal Food, 16(8), 719-727. https://doi.org/10.1089/jmf.2012.2480
Shah, M. A., Jakkawanpitak, C., Sermwittayawong, D., & Panichayupakaranant, P. (2017). Rhinacanthins-rich extract enhances glucose uptake and inhibits adipogenesis in 3T3-L1 adipocytes and L6 myotubes. Pharmacognosy Magazine, 13(4), 817-821. https://doi.org/10.4103/pm.pm_236_17
Shah, M. A., Keach, J. E., & Panichayupakaranant, P. (2018). Antidiabetic naphthoquinones and their plant resources in Thailand. Chemical and Pharmaceutical Bulletin, 66(5), 483-492. https://doi.org/10.1248/cpb.c17-00529
Shah, M. A., Reanmongkol, W., Radenahmad, N., Khalil, R., Ul-Haq, Z., & Panichayupakaranant, P. (2019). Anti-hyperglycemic and anti-hyperlipidemic effects of rhinacanthins-rich extract from Rhinacanthus nasutus leaves in nicotinamide-streptozotocin induced diabetic rats. Biomedicine & Pharmacotherapy, 113, 108702. https://doi.org/10.1016/j.biopha.2019.108702
Sheetz, M. J., & King, G. L. (2002). Molecular understanding of hyperglycemia's adverse effects for diabetic complications. JAMA, 288(20), 2579-2588. https://doi.org/10.1001/jama.288.20.2579
Shi, G.-J., Li, Y., Cao, Q.-H., Wu, H.-X., Tang, X.-Y., Gao, X.-H., Yu, J. Q., Chen, Z., & Yang, Y. (2019). In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomedicine & Pharmacotherapy, 109, 1085-1099. https://doi.org/10.1016/j.biopha.2018.10.130
Sinha, A. K. (1972). Colorimetric assay of catalase. Analytical Biochemistry, 47(2), 389-394. https://doi.org/10.1016/0003-2697(72)90132-7
Skovsø, S. (2014). Modeling type 2 diabetes in rats using high fat diet and streptozotocin. Journal of diabetes investigation, 5(4), 349-358. https://doi.org/10.1111/jdi.12235
Spinas, G. A. (1999). The dual role of nitric oxide in islet β-cells. Physiology, 14(2), 49-54. https://doi.org/10.1152/physiologyonline.1999.14.2.49
Twaij, H. A., & Al-Badr, A. A. (1988). Hypoglycemic activity of Artemisia herba alba. Journal of Ethnopharmacology, 24(2-3), 123-126. https://doi.org/10.1016/0378-8741(88)90143-2
Vessal, M., Hemmati, M., & Vasei, M. (2003). Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 135(3), 357-364. https://doi.org/10.1016/S1532-0456(03)00140-6
Vetere, A., Choudhary, A., Burns, S. M., & Wagner, B. K. (2014). Targeting the pancreatic β-cell to treat diabetes. Nature Reviews Drug Discovery, 13(4), 278-289. https://doi.org/10.1038/nrd4231
World Health Organization. (1980). World Health Organization expert committee on Diabetes mellitus: Second report. Technical Report Series, 646, 61-66.
Yanardağ, R., Bolkent, Ş., Tabakoğlu-Oğuz, A., & Özsoy-Saçan, Ö. (2003). Effects of Petroselinum crispum extract on pancreatic B cells and blood glucose of streptozotocin-induced diabetic rats. Biological and Pharmaceutical Bulletin, 26(8), 1206-1210. https://doi.org/10.1248/bpb.26.1206
Yokoyama, H., Emoto, M., Fujiwara, S., Motoyama, K., Morioka, T., Komatsu, M., & Nishizawa, Y. (2003). Quantitative insulin sensitivity check index and the reciprocal index of homeostasis model assessment in normal range weight and moderately obese type 2 diabetic patients. Diabetes Care, 26(8), 2426-2432. https://doi.org/10.2337/diacare.26.8.2426
Yoon, K. H., Ko, S. H., Cho, J. H., Lee, J. M., Ahn, Y. B., Song, K. H., Yoo, S. J., Kang, M. I., Cha, B. Y., Lee, K. W., Son, H. Y., Kang, S. K., Kim, H. S., Lee, I. K., & Bonner-Weir, S. (2003). Selective β-cell loss and α-cell expansion in patients with type 2 diabetes mellitus in Korea. The Journal of Clinical Endocrinology & Metabolism, 88(5), 2300-2308. https://doi.org/10.1210/jc.2002-020735
Yusufoglu, H., Soliman, G., Abdel-Rahman, R., Abdel-Kader, M., Genaie, M., Bedir, E., & Öztürk, B. (2015). Antioxidant and antihyperglycemic effects of Ferula drudeana and Ferula huber-morathii in experimental diabetic rats. International Journal of Pharmacology, 11(7), 532-541.
Zhao, L. L., Makinde, E. A., Shah, M. A., Olatunji, O. J., & Panichayupakaranant, P. (2019). Rhinacanthins-rich extract and rhinacanthin C ameliorate oxidative stress and inflammation in streptozotocin-nicotinamide-induced diabetic nephropathy. Journal of Food Biochemistry, 43(4), e12812. https://doi.org/10.1111/jfbc.12812
Zhao, Y.-Y. (2013). Traditional uses, phytochemistry, pharmacology, pharmacokinetics and quality control of Polyporus umbellatus (pers.) fries: a review. Journal of Ethnopharmacology, 149(1), 35-48. https://doi.org/10.1016/j.jep.2013.06.031

Auteurs

Ebrahim Latifi (E)

Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.

Ahmad Ali Mohammadpour (AA)

Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.

Behrooz Fathi Hafshejani (B)

Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.

Hosein Nourani (H)

Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH