An Insight into Modern Targeted Genome-Editing Technologies with a Special Focus on CRISPR/Cas9 and its Applications.


Journal

Molecular biotechnology
ISSN: 1559-0305
Titre abrégé: Mol Biotechnol
Pays: Switzerland
ID NLM: 9423533

Informations de publication

Date de publication:
Feb 2023
Historique:
received: 30 12 2021
accepted: 13 04 2022
pubmed: 28 4 2022
medline: 18 1 2023
entrez: 27 4 2022
Statut: ppublish

Résumé

Genome-editing technology has enabled scientists to make changes in model organisms' DNA at the genomic level to get biotechnologically important products from them. Most commonly employed technologies for this purpose are transcription activator like effector nucleases (TALENs), homing-endonucleases or meganucleases, zinc finger nucleases (ZFNs), and clustered regularly interspaced short palindromic repeats (CRISPR) associated protein 9 (Cas9). Among these tools, CRISPR/Cas9 is most preferred because it's easy to use, has a small mutation rate, has great effectiveness, low cost of development, and decreased rate of advancement. CRISPR/Cas9 has a lot of applications in plants, animals, humans, and microbes. It also has applications in many fields such as horticulture, cancer, food biotechnology, and targeted human genome treatments. CRISPR technology has shown great potential for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic to provide early and easy detection methods, possible treatment, and vaccine development. In the present review, genome-editing tools with their basic assembly and features have been discussed. Exceptional notice has been paid to CRISPR technology on basis of its structure and significant applications in humans, plants, animals, and microbes such as bacteria, viruses, and fungi. The review has also shed a little light on current CRISPR challenges and future perspectives.

Identifiants

pubmed: 35474409
doi: 10.1007/s12033-022-00501-4
pii: 10.1007/s12033-022-00501-4
pmc: PMC9041284
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

227-242

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 5, 1262–1278. https://doi.org/10.1016/j.cell.2014.05.010
doi: 10.1016/j.cell.2014.05.010
Kamburova, V. S., Nikitina, E. V., Shermatov, S. E., Buriev, Z. T., Kumpatla, S. P., Emani, C., & Abdurakhmonov, I. Y. (2017). Genome editing in plants: An overview of tools and applications. International Journal of Agronomy. https://doi.org/10.1155/2017/731535113
doi: 10.1155/2017/731535113
Moon, S. B., Kim, D. Y., & Ko, J. H. (2019). Recent advances the CRISPR genome editing tool set. Experimental and Molecular Medicine, 51, 1–11. https://doi.org/10.1038/s12276-019-0339-7
doi: 10.1038/s12276-019-0339-7
Ahmad, H. I., Ahmad, M. J., Asif, A. R., Adnan, M., Iqbal, M. K., Mehmood, K., Muhammad, S. A., Bhuiyan, A. A., Elokil, A., Du, X., Zhao, C., Liu, X., & Xie, S. (2018). A review of CRISPR-based genome editing: Survival, evolution and challenges. Current issues in Molecular Biology, 28, 47–68. https://doi.org/10.21775/cimb.028.047
doi: 10.21775/cimb.028.047
Li, H., Yang, Y., Hong, W., Huang, M., Wu, M., & Zhao, X. (2020). Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects. Signal Transduction and Targeted Therapy, 3, 5–1. https://doi.org/10.1038/s41392-019-0089-y
doi: 10.1038/s41392-019-0089-y
Gaj, T., Sirk, S. J., Shui, S. L., & Liu, J. (2016). Genome-editing technologies: Principles and applications. Cold Spring Harbor Perspective Biology, 1, 8–12. https://doi.org/10.1101/cshperspect.a023754
doi: 10.1101/cshperspect.a023754
Jaiswal, S., Singh, D. K., & Shukla, P. (2019). Gene editing and systems biology tools for pesticide bioremediation: A review. Frontiers in Microbiology, 13, 10–87. https://doi.org/10.3389/fmicb.2019.00087
doi: 10.3389/fmicb.2019.00087
Palpant, N. J., & Dudzinski, D. (2013). Zinc finger nucleases: Looking toward translation. Gene Therapy. https://doi.org/10.1038/gt.2012.2
doi: 10.1038/gt.2012.2
Xiong, J., Ding, J., & Li, Y. (2015). Genome-editing technologies and their potential application in horticultural crop breeding. Horticulture Research. https://doi.org/10.1038/hortres.2015.19
doi: 10.1038/hortres.2015.19
Sather, B. D., Romano Ibarra, G. S., Sommer, K., Curinga, G., Hale, M., Khan, I. F., Singh, S., Song, Y., Gwiazda, K., & Sahni, J. (2015). Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Science Translational Medicine, 7, 307.
Xiao, Q., Guo, D., & Chen, S. (2019). Application of CRISPR/Cas9-based gene editing in HIV-1/AIDS therapy. Frontiers in Cellular and Infection Microbiology, 22, 9–69. https://doi.org/10.3389/fcimb.2019.00069.PMID:30968001;PMCID:PMC6439341
doi: 10.3389/fcimb.2019.00069.PMID:30968001;PMCID:PMC6439341
Khalil, A. M. (2020). The genome editing revolution. Journal of Genetic Engineering and Biotechnology, 18, 1–16.
Ahmar, S., Saeed, S., Khan, M. H. U., Ullah Khan, S., Mora-Poblete, F., Kamran, M., & Jung, K. H. (2020). A revolution toward gene-editing technology and its application to crop improvement. International Journal of Molecular Sciences., 21(16), 5665.
Mulvihill, J. J., Capps, B., Joly, Y., Lysaght, T., Zwart, H. A., & Chadwick, R. (2017). Ethical issues of CRISPR technology and gene editing through the lens of solidarity. British medical bulletin, 122(1), 17–29.
Li, Q., Qin, Z., Wang, Q., Xu, T., Yang, Y., & He, Z. (2019). Applications of genome editing technology in animal disease modeling and gene therapy. Computational and Structural Biotech Journal. https://doi.org/10.1016/j.csbj.2019.05.006
doi: 10.1016/j.csbj.2019.05.006
Li, C., Brant, E., Budak, H., & Zhang, B. (2021). CRISPR/Cas: A nobel prize award-winning precise genome editing technology for gene therapy and crop improvement. Journal of Zhejiang University-SCIENCE B, 22(4), 253–284.
Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 8, 2281–2308. https://doi.org/10.1038/nprot.2013.143
doi: 10.1038/nprot.2013.143
Ding, W., Zhang, Y., & Shi, S. (2020). Development and application of CRISPR/Cas in microbial biotechnology. Frontiers in Bioengineering and Biotechnology. https://doi.org/10.3389/fbioe.2020.00711
doi: 10.3389/fbioe.2020.00711
Ford, K., McDonald, D., & Mali, P. (2019). Functional genomics via CRISPR–Cas. Journal of Molecular Biology, 431, 48–65. https://doi.org/10.1016/j.jmb.2018.06.034
doi: 10.1016/j.jmb.2018.06.034
Guitart, J. R., Johnson, J. L., & Chien, W. W. (2016). Research techniques made simple: The application of CRISPR-Cas9 and genome editing in investigative dermatology. The Journal of Investigative Dermatology, 136, e87–e93. https://doi.org/10.1016/j.jid.2016.06.007
doi: 10.1016/j.jid.2016.06.007
Manghwar, H., Lindsey, K., Zhang, X., & Jin, S. (2019). CRISPR/Cas system: Recent advances and future prospects for genome editing. Trends in plant science., 24(12), 1102–1125.
Chen, B., Niu, Y., Wang, H., Wang, K., Yang, H., & Li, W. (2020). Recent advances in CRISPR research. Protein & Cell, 11(11), 786–791. https://doi.org/10.1007/s13238-020-00704-y
doi: 10.1007/s13238-020-00704-y
Dolan, A. E., Hou, Z., Xiao, Y., Gramelspacher, M. J., Heo, J., Howden, S. E., Freddolino, P. L., Ke, A., & Zhang, Y. (2019). Introducing a spectrum of long-range genomic deletions in human embryonic stem cells using type I CRISPR-Cas. Molecular Cell, 74(5), 936–95032.
Morisaka, H., Yoshimi, K., Okuzaki, Y., Gee, P., Kunihiro, Y., Sonpho, E., Xu, H., Sasakawa, N., Naito, Y., & Nakada, S. (2019). CRISPR-Cas3 induces broad and unidirectional genome editing in human cells. Nature Communications, 10, 5302.
Cameron, P., Coons, M. M., Klompe, S. E., Lied, A. M., Smith, S. C., Vidal, B., Donohoue, P. D., Rotstein, T., Kohrs, B. W., & Nyer, D. B. (2019). Harnessing type I CRISPR-Cas systems for genome engineering in human cells. Nature Biotechnology, 37(12), 1471–1477.
Klompe, S. E., Vo, P. L. H., Halpin-Healy, T. S., & Sternberg, S. H. (2019). Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature, 571, 219–225.
Gomaa, A. A., Klumpe, H. E., Luo, M. L., Selle, K., Barrangou, R., & Beisel, C. L. (2014). Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. mBio. https://doi.org/10.1128/mBio.00928-13
doi: 10.1128/mBio.00928-13
Bikard, D., Euler, C. W., Jiang, W., Nussenzweig, P. M., Goldberg, G. W., Duportet, X., Fischetti, V. A., & Marraffini, L. A. (2014). Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nature Biotechnology, 32, 1146–1150. https://doi.org/10.1038/nbt.3043
doi: 10.1038/nbt.3043
Roehm, P. C., Shekarabi, M., Wollebo, H. S., Bellizzi, A., He, L., Salkind, J., & Khalili, K. (2016). Inhibition of HSV-1 replication by gene editing strategy. Science and Reports. https://doi.org/10.1038/srep23146
doi: 10.1038/srep23146
Van Diemen, F. R., Kruse, E. M., Hooykaas, M., Bruggeling, C. E., Schurch, A. C., van Ham, P. M., Imhof, S. M., Nijhuis, M., Wiertz, E. J., & Lebbink, R. J. (2016). CRISPR/Cas9- mediated genome editing of herpesviruses limits productive and latent infections. PLoS Pathogens, 12, e1005701. https://doi.org/10.1371/journal.ppat.1005701
doi: 10.1371/journal.ppat.1005701
Wollebo, H. S., Bellizzi, A., Kaminski, R., Hu, W., White, M. K., & Khalili, K. (2015). CRISPR/Cas9 system as an agent for eliminating polyomavirus JC infection. PLoS ONE, 10, e0136046. https://doi.org/10.1371/journal.pone.0136046
doi: 10.1371/journal.pone.0136046
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity y. Science, 337, 816–821. https://doi.org/10.1126/science.1225829
doi: 10.1126/science.1225829
Hirano, H. (2016). Structure and engineering of Francisella novicida Cas9. Cell, 164, 950–961.
Kleinstiver, B. P. (2015). Engineered CRISPRCas9 nucleases with altered PAM specificities. Nature, 523, 481–485.
Kim, E. (2017). In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nature Communications, 8(14500), 102.
Liu, L. (2017). C2c1-sgRNA complex structure reveals RNA-guided DNA cleavage mechanism. Molecular Cell, 65(310–322), 103.
Harrington, L. B. (2018). Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science, 362, 839–842.
Yamano, T. (2016). Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell, 165, 949–962.
Zhang, Y., & Showalter, A. M. (2020). CRISPR/Cas9 genome editing technology: A valuable tool for understanding plant cell wall biosynthesis and function. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2020.589517.PMID:33329650;PMCID:PMC7714752.17
doi: 10.3389/fpls.2020.589517.PMID:33329650;PMCID:PMC7714752.17
Akram, F., Ul Haq, I., Ahmed, Z., Khan, H., & Ali, M. S. (2020). CRISPR-Cas9, a promising therapeutic tool for cancer therapy: A review. Protein and peptide letters, 27(10), 931–944.
Zhang, B. (2021). CRISPR/Cas gene therapy. Journal of Cellular Physiology, 236(4), 2459–2481.
Vertex. (2018a) A safety and efficacy study evaluating CTX001 in subjects with severe sickle cell disease. ClinicalTrial.gov Identifier: NCT03745287.
Vertex. (2018b). A safety and efficacy study evaluating CTX001 in subjects with transfusion-dependent β-thalassemia. ClinicalTrial.-gov Identifier: NCT03655678.
Allergan. 2019. Single ascending dose study in participants with LCA10. ClinicalTrial.gov Identifier: NCT03872479.
Adli, M. (2018). The CRISPR tool kit for genome editing and beyond. Nature Communications, 9, 9.
Devkota, S. (2018). The road less traveled: Strategies to enhance the frequency of homology-directed repair (HDR) for increased efficiency of CRISPR/Cas-mediated transgenesis. BMB Reports, 51, 437–443.
Jiang, F. G., Taylor, D. W., Chen, J. S., Kornfeld, J. E., Zhou, K. H., Thompson, A. J., Nogales, E., & Doudna, J. A. (2016). Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science, 351, 867–871.
Nishimasu, H., Ran, F. A., Hsu, P. D., Konermann, S., Shehata, S. I., Dohmae, N., Ishitani, R., Zhang, F., & Nureki, O. (2014). Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 156, 935–949.
Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A., & Liu, D. R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533, 420–424.
Singh, V., Gohil, N., RamírezGarcía, R., Braddick, D., & Fofié, C. K. (2018). Recent advances in CRISPR-Cas9 genome editing technology for biological and biomedical investigations. Jouranl of Cellular Biochemistry. https://doi.org/10.1002/jcb.26165
doi: 10.1002/jcb.26165
Harrison, P. J. (1999). The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain, 122, 593–624.
Sanchez-Rivera, F. J., & Jacks, T. (2015). Applications of the CRISPR-Cas9 system in cancer biology. Nature Reviews Cancer, 15, 387–395.
Chen, S., Sun, H., Miao, K., & Deng, C. X. (2016). CRISPR-Cas9: From genome editing to cancer research. International Journal of Biological Sciences, 12, 1427–1436.
Eyquem, J., Mansilla-Soto, J., Giavridis, T., Van Der Stegen, S. J., Hamieh, M., Cunanan, K. M., Odak, A., Gonen, M., & Sadelain, M. (2017). Targeting a CAR to the € TRAC locus with CRISPR/Cas9 enhances tumor rejection. Nature, 543(7643), 113–117.
Gao, S. P., Kiliti, A. J., Zhang, K., Vasani, N., Mao, N., Jordan, E., Wise, H. C., Bhattarai, T. S., Hu, W., Dorso, M., & Rodrigues, J. A. (2021). AKT1 E17K inhibits cancer cell migration by abrogating β-catenin signaling. Molecular Cancer Research, 19(4), 573–584.
Bungsy, M., Palmer, M. C. L., Jeusset, L. M., et al. (2021). Reduced RBX1 expression induces chromosome instability and promotes cellular transformation in high-grade serous ovarian cancer precursor cells. Cancer Letters, 500, 194–207. https://doi.org/10.1016/j.canlet.2020.11.051
doi: 10.1016/j.canlet.2020.11.051
Yu, Q. H., Wang, B., Li, N., Tang, Y., Yang, S., Yang, T., Xu, J., Guo, C., Yan, P., Wang, Q., & Asmutola, P. (2017). CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate long-shelf life tomato lines. Scientific Reports, 7(1), 1–9.
Li, R., Fu, D., Zhu, B., Luo, Y., & Zhu, H. (2018). CRISPR/Cas9-mediated mutagenesis of lncRNA1459 alters tomato fruit ripening. The Plant Journal, 94(3), 513–524.
Kwon, C. T., Heo, J., Lemmon, Z. H., Capua, Y., Hutton, S. F., Van Eck, J., Park, S. J., & Lippman, Z. P. (2019). Rapid customization of Solanaceae fruit crops for urban agriculture. Nature Biotechnology, 38, 182–188.
Amoasii, L., Hildyard, J. C. W., Li, H., Sanchez-Ortiz, E., Mireault, A., Caballero, D., Harron, R., Stathopoulou, T. R., Massey, C., & Shelton, J. M. (2018). Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science, 362, 86–91.
Gao, X., Tao, Y., Lamas, V., Huang, M., Yeh, W. H., Pan, B., Hu, Y. J., Hu, J. H., Thompson, D. B., & Shu, Y. (2018). Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature, 553, 217–221.
Nelson, C. E., Wu, Y., Gemberling, M. P., Oliver, M. L., Waller, M. A., Bohning, J. D., Robinson-Hamm, J. N., Bulaklak, K., Castellanos Rivera, R. M., & Collier, J. H. (2019). Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nature Medicine, 25, 427–432.
Liu, Z., Cai, Y., Wang, Y., Nie, Y., Zhang, C., Xu, Y., Zhang, X., Lu, Y., Wang, Z., & Poo, M. (2018). Cloning of macaque monkeys by somatic cell nuclear transfer. Cell, 172(881–887), e887 41.
Qiu, P. Y., Jiang, J., Liu, Z., Cai, Y. L., Huang, T., Wang, Y., Liu, Q. M., Nie, Y. H., Liu, F., & Cheng, J. M. (2019). BMAL1 knockout macaque monkeys display reduced sleep and psychiatric disorders. National Science Review, 6, 87–100.
Yan, S. Z., Tu, Z., Liu, Z., Fan, N., Yang, H., Yang, S., Yang, W., Zhao, Y., Ouyang, Z., & Lai, C. (2018). A Huntingtin Knockin PIG model capitulates features of selective neurodegeneration in Huntington’s disease. Cell, 173(989–1002), e1013.
Grissa, I., Vergnaud, G., & Pourcel, C. (2007). CRISPRFinder: A web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Research, 35, W52–W57. https://doi.org/10.1093/nar/gkm360
doi: 10.1093/nar/gkm360
Sorek, R., Lawrence, C. M., & Wiedenheft, B. (2013). CRISPR-mediated adaptive immune systems in bacteria and archaea. Annual Review of Biochemistry, 82, 237–266. https://doi.org/10.1146/annurev-biochem-072911-172315
doi: 10.1146/annurev-biochem-072911-172315
Pan, M., & Barrangou, R. (2020). Combining omics technologies with CRISPR-based genome editing to study food microbes. Current Opinion in Biotechnology, 61, 198–208. https://doi.org/10.1016/j.copbio.2019.12.027
doi: 10.1016/j.copbio.2019.12.027
Hidalgo-Cantabrana, C., Goh, Y. J., Pan, M., Sanozky-Dawes, R., & Barrangou, R. (2019). Genome editing using the endogenous type I CRISPR-Cas system in Lactobacillus crispatus. Proceedings of the National Academy of Sciences, 116, 15774–15783.
Li, Q., Chen, J., Minton, N. P., Zhang, Y., Wen, Z., Liu, J., Yang, H., Zeng, Z., Ren, X., Yang, J., Gu, Y., Jiang, W., Jiang, Y., & Yang, S. (2016). CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnology Journal. https://doi.org/10.1002/biot.201600053
doi: 10.1002/biot.201600053
Li, H., Shen, C. R., Huang, C. H., Sung, L. Y., Wu, M. Y., & Hu, Y. C. (2016). CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metabolic Engineering, 38, 293–302. https://doi.org/10.1016/j.ymben.2016.09.006
doi: 10.1016/j.ymben.2016.09.006
Weld, R. J., Plummer, K. M., Carpenter, M. A., & Ridgway, H. W. (2006). Approaches to functional genomics in filamentous fungi. Cell Research, 16, 31–44. https://doi.org/10.1038/sj.cr.7310006
doi: 10.1038/sj.cr.7310006
Liu, R., Chen, L., Jiang, Y., Zhou, Z., & Zou, G. (2015). Efficient genome editing in filamentous fungus Trichodermareesei using the CRISPR/Cas9 system. Cell Discovery, 1, 15007. https://doi.org/10.1038/celldisc.2015
doi: 10.1038/celldisc.2015
Hao, Z., & Su, X. (2019). Fast gene disruption in Trichoderma reesei using in vitro assembled Cas9/gRNA complex. BMC Biotechnology, 19, 2. https://doi.org/10.1186/s12896-018-0498-y
doi: 10.1186/s12896-018-0498-y
Khan, K. A., & Duceppe, M. O. (2021). Cross-reactivity and inclusivity analysis of CRISPR-based diagnostic assays of coronavirus SARS-CoV-2. PeerJ, 9, e12050.
Gupta, R., Kazi, T. A., Dey, D., Ghosh, A., Ravichandiran, V., Swarnakar, S., Syamal, R., Swades, R. B., & Ghosh, D. (2021). CRISPR detectives against SARS-CoV-2: A major setback against COVID-19 blowout. Applied Microbiology and Biotechnology, 105(20), 7593–7605.
Chen, J. S., Ma, E., Harrington, L. B., Da Costa, M., Tian, X., Palefsky, J. M., & Doudna, J. A. (2018). CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 360(6387), 436–439.
Azhar, M., Phutela, R., Ansari, A.H., Sinha, D., Sharma, N., Kumar, M., Aich, M., Sharma, S., Rauthan, R., Singhal, K., Lad, H., Patra, P.K., Makharia, G., Chandak, G.R., Chakraborty, D., Maiti, S. (2020) Rapid, felddeployable nucleobase detection and identification using FnCas9. bioRxiv
Abbott, T. R., Dhamdhere, G., Liu, Y., Lin, X., Goudy, L., Zeng, L., Chemparathy, A., Chmura, S., Heaton, N. S., Debs, R., Pande, T., Endy, D., Rudda, M. F. L., Lewis, D. B., & Qi, L. S. (2020). Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza. Cell, 181(4), 865–876.
Yuan, C., Tian, T., Sun, J., Hu, M., Wang, X., Xiong, E., Cheng, M., Bao, Y., Lin, W., Jiang, J., Yang, C., Chen, Q., Zhang, H., Wang, H., Wang, X., Dengm, X., Liaom, X., Liu, Y., Wang, Z., … Zhou, X. (2020). Universal and naked-eye gene detection platform based on the clustered regularly interspaced short palindromic repeats/Cas12a/13a system. Analytical Chemistry. https://doi.org/10.1021/acs.analchem.9b05597
doi: 10.1021/acs.analchem.9b05597
Straiton, J. (2020). CRISPR vs COVID-19: How can gene editing help beat a virus? BioTechniques, 69, 327–329.
Johnson, M. J., Laoharawee, K., Lahr, W. S., Webber, B. R., & Moriarity, B. S. (2018). Engineering of primary human B cells with CRISPR/ Cas9 targeted nuclease. Scientific Reports. https://doi.org/10.1038/s41598-018-30358-0
doi: 10.1038/s41598-018-30358-0
Faiq, M. A. (2020). B-cell engineering: A promising approach towards vaccine development for COVID-19. Medical Hypotheses, 144, 109948. https://doi.org/10.1016/j.mehy.2020.109948
doi: 10.1016/j.mehy.2020.109948
Brokowski, C., & Adli, M. (2019). CRISPR ethics: Moral considerations for applications of a powerful tool. Journal of Molecular Biology, 431, 88–101. https://doi.org/10.1016/j.jmb.2018.05.044
doi: 10.1016/j.jmb.2018.05.044
Sugarman, J. (2015). Ethics and germline gene editing. EMBO Reports, 16, 879–880. https://doi.org/10.15252/embr.201540879
doi: 10.15252/embr.201540879
Janssens, A. C. (2016). Designing babies through gene editing: Science or science fiction? Genetics in Medicine, 18, 1186–1187. https://doi.org/10.1038/gim.2016.28
doi: 10.1038/gim.2016.28
Li, C. X., & Qian, H. L. (2015). A double-edged sword: CRISPR-Cas9 is emerging as a revolutionary technique for genome editing. Military Medical Research, 2, 25. https://doi.org/10.1186/s40779-015-0054-1
doi: 10.1186/s40779-015-0054-1
Sharma, A., & Scot, C. T. (2015). The ethics of publishing human germline research. Nature Biotechnology, 33, 590–592. https://doi.org/10.1038/nbt.3252
doi: 10.1038/nbt.3252
Lander, E. S. (2015). Brave New Genome. New England Journal of Medicine, 373, 5–8. https://doi.org/10.1056/NEJMp1506446
doi: 10.1056/NEJMp1506446
Ayanoğlu, F. B., Elçin, A. E., & Elçin, Y. M. (2020). Bioethical issues in genome editing by CRISPR-Cas9 technology. Turkish Journal of Biology, 44(2), 110–120.
Shinwari, Z. K., Tanveer, F., & Khalil, A. T. (2018). Ethical issues regarding CRISPR mediated genome editing. Current Issues in Molecular Biology, 26(1), 103–110.

Auteurs

Fatima Akram (F)

Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan. fatima_iib@yahoo.com.

Sania Sahreen (S)

Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.

Farheen Aamir (F)

Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.

Ikram Ul Haq (IU)

Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
Pakistan Academy of Sciences, Islamabad, Pakistan.

Kausar Malik (K)

Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.

Memoona Imtiaz (M)

Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.

Waqas Naseem (W)

Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.

Narmeen Nasir (N)

Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.

Hafiza Mariam Waheed (HM)

Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH