Threshold effect of industrial agglomeration on carbon productivity in China's Yangtze River economic belt: a perspective of technical resourcing.
Carbon productivity
Global Malmquist–Luenberger
Industrial aggregation
Technical Resourcing
Threshold effect
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
Sep 2022
Sep 2022
Historique:
received:
07
12
2021
accepted:
13
04
2022
pubmed:
28
4
2022
medline:
21
9
2022
entrez:
27
4
2022
Statut:
ppublish
Résumé
The Yangtze River Economic Belt's industrial layout is characterized by industrial agglomeration. However, industrial agglomeration, while promoting economic development, has an uncertain impact on the ecological environment. This research studies the threshold impacts of pollution-intensive industrial agglomeration and green-based industrial agglomeration on the carbon productivity of the Yangtze River Economic Belt through the panel threshold regression models to find the "optimal industrial agglomeration scale." The results of the "optimal industrial agglomeration scale" show that under the existing economic conditions, only if pollution-intensive industrial agglomeration is controlled within a reasonable range can it contribute to carbon productivity. Green-based industries can only enhance carbon productivity when the scale of agglomeration reaches a certain value. In addition, this paper also points out that along the Yangtze River Economic Belt, regions with high agglomeration of green industries should consider investing more technological resources in emerging technologies that use clean energy as a production condition. In contrast, regions with high agglomeration of pollution-intensive industries should focus on improving existing technologies in which traditional energy sources are used as production conditions to increased carbon productivity.
Identifiants
pubmed: 35474430
doi: 10.1007/s11356-022-20310-1
pii: 10.1007/s11356-022-20310-1
doi:
Substances chimiques
Carbon
7440-44-0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
64704-64720Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Bai C, Du K, Yu Y, Feng C (2019) Understanding the trend of total factor carbon productivity in the world: insights from convergence analysis. Energ Econ 81:698–708. https://doi.org/10.1016/j.eneco.2019.05.004
doi: 10.1016/j.eneco.2019.05.004
Bai C, Feng C, Yan H, Yi X, Chen Z, Wei W (2020) Will income inequality influence the abatement effect of renewable energy technological innovation on carbon dioxide emissions? J Environ Manage 264:110482. https://doi.org/10.1016/j.jenvman.2020.110482
doi: 10.1016/j.jenvman.2020.110482
Becker B, Ivashina V (2014) Cyclicality of credit supply: firm level evidence. J Monetary Econ 62:76–93. https://doi.org/10.1016/j.jmoneco.2013.10.002
doi: 10.1016/j.jmoneco.2013.10.002
Binder M, Hsiao C, Pesaran MH (2005) Estimation and inference in short panel vector autoregressions with unit roots and cointegration. Economet Theor 21(4):795–837. https://doi.org/10.1017/S0266466605050413
doi: 10.1017/S0266466605050413
Chan KS (1993) Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model. Ann Stat 21:520–533. https://doi.org/10.1214/aos/1176349040
doi: 10.1214/aos/1176349040
Chen C, Sun Y, Lan Q, Jiang F (2020a) Impacts of industrial agglomeration on pollution and ecological efficiency—a spatial econometric analysis based on a big panel dataset of China’s 259 cities. J Clean Prod 258:120721. https://doi.org/10.1016/j.jclepro.2020.120721
doi: 10.1016/j.jclepro.2020.120721
Chen H, Liu C, Xie F, Zhang T, Guan F (2019) Green credit and company R&D level: empirical research based on threshold effects. Sustainability 11(7):1918. https://doi.org/10.3390/su11071918
doi: 10.3390/su11071918
Chen P, Xie R, Lu M (2020b) “Resource conservation” or “environmental friendliness”: how do urban clusters affect total-factor ecological performance in China? Int J Env Res Pub He 17(12):4361. https://doi.org/10.3390/ijerph17124361
doi: 10.3390/ijerph17124361
Christodoulou D, Lev B, Ma L (2018) The productivity of Chinese patents: the role of business area and ownership type. Int J Prod Econ 199:107–124. https://doi.org/10.1016/j.ijpe.2017.12.024
doi: 10.1016/j.ijpe.2017.12.024
Crosby M (2000) Patents, innovation and growth. Econ Rec 76(234):255–262. https://doi.org/10.1111/j.1475-4932.2000.tb00021.x
doi: 10.1111/j.1475-4932.2000.tb00021.x
De Hoyos RE, Sarafidis V (2006) Testing for cross-sectional dependence in panel-data models. Stata J 6(4):482–496. https://doi.org/10.1177/1536867X0600600403
doi: 10.1177/1536867X0600600403
Diao XD, Zeng SX, Tam CM, Tam VW (2009) EKC analysis for studying economic growth and environmental quality: a case study in China. J Clean Prod 17(5):541–548. https://doi.org/10.1016/j.jclepro.2008.09.007
doi: 10.1016/j.jclepro.2008.09.007
Dong F, Wang Y, Zheng L, Li J, Xie S (2020) Can industrial agglomeration promote pollution agglomeration? Evidence from China. J Clean Prod 246:118960. https://doi.org/10.1016/j.jclepro.2019.118960
doi: 10.1016/j.jclepro.2019.118960
Dumitrescu EI, Hurlin C (2012) Testing for Granger non-causality in heterogeneous panels. Econ Model 29(4):1450–1460. https://doi.org/10.1016/j.econmod.2012.02.014
doi: 10.1016/j.econmod.2012.02.014
Engle RF, Granger CW (1987) Co-integration and error correction: representation, estimation, and testing. Econometrica 55(2):251–276. https://doi.org/10.2307/1913236
doi: 10.2307/1913236
Fan LW, You J, Zhou P (2021) How does technological progress promote carbon productivity? Evidence from Chinese manufacturing industries. J Environ Manage 277:111325. https://doi.org/10.1016/j.jenvman.2020.111325
doi: 10.1016/j.jenvman.2020.111325
Guo Y, Tong L, Mei L (2020) The effect of industrial agglomeration on green development efficiency in Northeast China since the revitalization. J Clean Prod 258:120584. https://doi.org/10.1016/j.jclepro.2020.120584
doi: 10.1016/j.jclepro.2020.120584
Han D, Li T, Feng S, Shi Z (2020) Application of threshold regression analysis to study the impact of clean energy development on China’s carbon productivity. Int J Env Res Pub He 17(3):1060. https://doi.org/10.3390/ijerph17031060
doi: 10.3390/ijerph17031060
Hansen BE (1999) Threshold effects in non-dynamic panels: Estimation, testing, and inference. J Econometrics 93(2):345–368. https://doi.org/10.1016/S0304-4076(99)00025-1
doi: 10.1016/S0304-4076(99)00025-1
Hao Y, Wu Y, Wu H et al (2020) How do FDI and technical innovation affect environmental quality? Evidence from China. Environ Sci Pollut Res 27:7835–7850. https://doi.org/10.1007/s11356-019-07411-0
doi: 10.1007/s11356-019-07411-0
Hashmi R, Alam K (2019) Dynamic relationship among environmental regulation, innovation, CO2 emissions, population, and economic growth in OECD countries: a panel investigation. J Clean Prod 231:1100–1109. https://doi.org/10.1016/j.jclepro.2019.05.325
doi: 10.1016/j.jclepro.2019.05.325
Hu AG, Png IP (2013) Patent rights and economic growth: evidence from cross-country panels of manufacturing industries. Oxford Econ Pap 65(3):675–698. https://doi.org/10.1093/oep/gpt011
doi: 10.1093/oep/gpt011
Huang C, Wang JW, Wang CM et al (2021) Does tourism industry agglomeration reduce carbon emissions? Environ Sci Pollut Res 28:30278–30293. https://doi.org/10.1007/s11356-021-12706-2
doi: 10.1007/s11356-021-12706-2
Kaya Y, Yokobori K (eds) (1997) Environment, energy, and economy: strategies for sustainability. United Nations University Press, Tokyo
Kim DH, Lin SC, Chen TC (2016) Financial structure, firm size and industry growth. Int Rev Econ Financ 41:23–39. https://doi.org/10.1016/j.iref.2015.10.002
doi: 10.1016/j.iref.2015.10.002
Kong Y, Khan R (2019) To examine environmental pollution by economic growth and their impact in an environmental Kuznets curve (EKC) among developed and developing countries. PLoS ONE 14(3):e0209532. https://doi.org/10.1371/journal.pone.0209532
doi: 10.1371/journal.pone.0209532
Lai YL, Hsu MS, Lin FJ, Chen YM, Lin YH (2014) The effects of industry cluster knowledge management on innovation performance. J Bus Res 67(5):734–739. https://doi.org/10.1016/j.jbusres.2013.11.036
doi: 10.1016/j.jbusres.2013.11.036
Li K, Zhou Y, Xiao H, Li Z, Shan Y (2021) Decoupling of economic growth from CO2 emissions in Yangtze River Economic Belt cities. Sci Total Environ 775:145927. https://doi.org/10.1016/j.scitotenv.2021.145927
doi: 10.1016/j.scitotenv.2021.145927
Li W, Wang W, Wang Y, Ali M (2018) Historical growth in total factor carbon productivity of the Chinese industry—a comprehensive analysis. J Clean Prod 170:471–485. https://doi.org/10.1016/j.jclepro.2017.09.145
doi: 10.1016/j.jclepro.2017.09.145
Li X, Wang YA (2017) Study on the convergence of carbon productivity in the major countries of The Belt and Road and the analysis of its influencing factors. Wuhan Univ J Soc Sci 70:58–76
Lin B, Du K (2015) Modeling the dynamics of carbon emission performance in China: a parametric Malmquist index approach. Energ Econ 49:550–557. https://doi.org/10.1016/j.eneco.2015.03.028
doi: 10.1016/j.eneco.2015.03.028
Lin SL, Zhang ZX, Liu GP (2013) Technological innovation, spatial agglomeration and regional carbon productivity. China Popul Resour Environ 23:36–45. https://doi.org/10.3969/J.ISSN.1002-2104.2013.05.006
doi: 10.3969/J.ISSN.1002-2104.2013.05.006
Lin ST, Niu HJ (2018) Green consumption: Environmental knowledge, environmental consciousness, social norms, and purchasing behavior. Bus Strateg Environ 27(8):1679–1688. https://doi.org/10.1002/bse.2233
doi: 10.1002/bse.2233
Liu J, Cheng Z, Zhang H (2017a) Does industrial agglomeration promote the increase of energy efficiency in China? J Clean Prod 164:30–37. https://doi.org/10.1016/j.jclepro.2017.06.179
doi: 10.1016/j.jclepro.2017.06.179
Liu S, He N, Shi Y, Li G (2021) The roles logistics agglomeration and technological progress play in air pollution—new evidence in sub-regions of Chongqing, China. J Clean Prod 317:128414. https://doi.org/10.1016/j.jclepro.2021.128414
doi: 10.1016/j.jclepro.2021.128414
Liu S, Zhu Y, Du K (2017b) The impact of industrial agglomeration on industrial pollutant emission: evidence from China under New Normal. Clean Technol Envir 19:2327–2334. https://doi.org/10.1007/s10098-017-1407-0
doi: 10.1007/s10098-017-1407-0
Liu X, Zhang X (2021) Industrial agglomeration, technological innovation and carbon productivity: evidence from China. Resour Conserv Recy 166:105330. https://doi.org/10.1016/j.resconrec.2020.105330
doi: 10.1016/j.resconrec.2020.105330
Malmberg A, Maskell P (1997) Towards an explanation of regional specialization and industry agglomeration. Eur Plann ST 5(1):25–41. https://doi.org/10.1080/09654319708720382
doi: 10.1080/09654319708720382
Nkamleu GB (2004) Productivity growth, technical progress and efficiency change in African agriculture. Afr Dev Rev 16(1):203–222. https://doi.org/10.1111/j.1467-8268.2004.00089.x
doi: 10.1111/j.1467-8268.2004.00089.x
Ouyang X, Shao Q, Zhu X, He Q, Xiang C, Wei G (2019) Environmental regulation, economic growth and air pollution: panel threshold analysis for OECD countries. Sci Total Environ 657:234–241. https://doi.org/10.1016/j.scitotenv.2018.12.056
doi: 10.1016/j.scitotenv.2018.12.056
Pei Y, Zhu Y, Liu S, Xie M (2020) Industrial agglomeration and environmental pollution: based on the specialized and diversified agglomeration in the Yangtze River Delta. Environ Dev Sustain 23(3):4061–4085. https://doi.org/10.1007/s10668-020-00756-4
doi: 10.1007/s10668-020-00756-4
Peng B, Zheng C, Wei G, Elahi E (2020) The cultivation mechanism of green technology innovation in manufacturing industry: from the perspective of ecological niche. J Clean Prod 252:119711. https://doi.org/10.1016/j.jclepro.2019.119711
doi: 10.1016/j.jclepro.2019.119711
Ren Y, Fang C, Lin X, Sun S, Li G, Fan B (2019) Evaluation of the eco-efficiency of four major urban agglomerations in coastal eastern China. J Geogr Sci 29(8):1315–1330. https://doi.org/10.1007/s11442-019-1661-7
doi: 10.1007/s11442-019-1661-7
Roh S, Tae S, Kim R (2018) Developing a Green Building Index (GBI) certification system to effectively reduce carbon emissions in South Korea’s building industry. Sustainability 10(6):1872. https://doi.org/10.3390/su10061872
doi: 10.3390/su10061872
Santra S (2017) The effect of technological innovation on production-based energy and CO2 emission productivity: evidence from BRICS countries. Afr J Sci Technol in 9(5):503–512. https://doi.org/10.1080/20421338.2017.1308069
doi: 10.1080/20421338.2017.1308069
Shen N, & Peng H (2020) Can industrial agglomeration achieve the emission-reduction effect? Socio-Econ Plan Sci 100867. https://doi.org/10.1016/j.seps.2020.100867
Steinle C, Schiele H (2002) When do industries cluster?: a proposal on how to assess an industry’s propensity to concentrate at a single region or nation. Res Policy 31(6):849–858. https://doi.org/10.1016/S0048-7333(01)00151-2
doi: 10.1016/S0048-7333(01)00151-2
Swianiewicz, P., & Herbst, M. (2002). Economies and diseconomies of scale in Polish local governments. Consolidation or fragmentation, 219–292. http://pdc.ceu.hu/archive/00006908/01/LGI_Consolidation-or-Fragmentation_2002.pdf#page=235
Tong H, Lim K S (1980) Threshold autoregression, limit cycles and cyclical data. J Roy Stat Soc B Met, 245-292. https://doi.org/10.1142/9789812836281_0002
Verhoef ET, Nijkamp P (2002) Externalities in urban sustainability: environmental versus localization-type agglomeration externalities in a general spatial equilibrium model of a single-sector monocentric industrial city. Ecol Econ 40(2):157–179. https://doi.org/10.1016/S0921-8009(01)00253-1
doi: 10.1016/S0921-8009(01)00253-1
Wang J, Ye X, Wei YD (2019a) Effects of agglomeration, environmental regulations, and technology on pollutant emissions in China: integrating spatial, social, and economic network analyses. Sustainability 11(2):363. https://doi.org/10.3390/su11020363
doi: 10.3390/su11020363
Wang X, Shao Q (2019) Non-linear effects of heterogeneous environmental regulations on green growth in G20 countries: evidence from panel threshold regression. Sci Total Environ 660:1346–1354. https://doi.org/10.1016/j.scitotenv.2019.01.094
doi: 10.1016/j.scitotenv.2019.01.094
Wang X, Zhang C, Zhang Z (2019b) Pollution haven or porter? The impact of environmental regulation on location choices of pollution-intensive firms in China. J Clean Prod 248:109248. https://doi.org/10.1016/j.jclepro.2020.124898
doi: 10.1016/j.jclepro.2020.124898
Wang Y, Wang J (2019) Does industrial agglomeration facilitate environmental performance: new evidence from urban China? J Environ Manage 248:109244. https://doi.org/10.1016/j.jenvman.2019.07.015
doi: 10.1016/j.jenvman.2019.07.015
Wang Z, Jia H, Xu T, Xu C (2018) Manufacturing industrial structure and pollutant emission: an empirical study of China. J Clean Prod 197:462–471. https://doi.org/10.1016/j.jclepro.2018.06.092
doi: 10.1016/j.jclepro.2018.06.092
Westerlund J (2007) Testing for error correction in panel data. Oxford Bull Econ Stat 69:709–748. https://doi.org/10.1111/j.1468-0084.2007.00477.x
doi: 10.1111/j.1468-0084.2007.00477.x
Xie F, Liu Y, Guan F, Wang N (2020) How to coordinate the relationship between renewable energy consumption and green economic development: from the perspective of technological advancement. Environ Sci Eur 32(1):71. https://doi.org/10.1186/s12302-020-00350-5
doi: 10.1186/s12302-020-00350-5
Xie R, Yuan Y, Huang J (2017) Different types of environmental regulations and heterogeneous influence on “green” productivity: evidence from China. Ecol Econ 132:104–112. https://doi.org/10.1016/j.ecolecon.2016.10.019
doi: 10.1016/j.ecolecon.2016.10.019
Xie F, Zhang B (2021) Impact of China’s outward foreign direct investment on green total factor productivity in “Belt and Road” participating countries: a perspective of institutional distance. Environ Sci Pollut Res 28:4704–4715. https://doi.org/10.1007/s11356-020-10849-2
doi: 10.1007/s11356-020-10849-2
Xie F, Zhang B, Wang N (2021) Non-linear relationship between energy consumption transition and green total factor productivity: a perspective on different technology paths. Sustain Prod Consump 28:91–104. https://doi.org/10.1016/j.spc.2021.03.036
doi: 10.1016/j.spc.2021.03.036
Xu F, He Z (2020) Testing slope homogeneity in panel data models with a multifactor error structure. Stat Pap 61(1):201–224. https://doi.org/10.1007/s00362-017-0929-1
doi: 10.1007/s00362-017-0929-1
Yang G, Zha D, Wang X, Chen Q (2020) Exploring the nonlinear association between environmental regulation and carbon intensity in China: the mediating effect of green technology. Ecol Indic 114:106309. https://doi.org/10.1016/j.ecolind.2020.106309
doi: 10.1016/j.ecolind.2020.106309
Yang W, Wang W, Ouyang S (2019) The influencing factors and spatial spillover effects of CO2 emissions from transportation in China. Sci Total Environ 696:133900. https://doi.org/10.1016/j.scitotenv.2019.133900
doi: 10.1016/j.scitotenv.2019.133900
Yi M, Wang Y, Yan M, Fu L, Zhang Y (2020) Government R&D subsidies, environmental regulations, and their effect on green innovation efficiency of manufacturing industry: Evidence from the Yangtze River economic belt of China. Int J Env Res Pub He 17(4):1330. https://doi.org/10.3390/ijerph17041330
doi: 10.3390/ijerph17041330
Yi S, Xiao-li A (2018) Application of threshold regression analysis to study the impact of regional technological innovation level on sustainable development. Renew Sust Energ Rev 89:27–32. https://doi.org/10.1016/j.rser.2018.03.005
doi: 10.1016/j.rser.2018.03.005
Yu Y, Choi Y, Wei X, Chen Z (2017) Did China’s regional transport industry enjoy better carbon productivity under regulations? J Clean Prod 165:777–787. https://doi.org/10.1016/j.jclepro.2017.07.105
doi: 10.1016/j.jclepro.2017.07.105
Yuan YJ, Xie RH (2015) Empirical research on the relationship of industrial agglomeration, technological innovation and environmental pollution. Stud Sci Sci 33:1340–1347. https://doi.org/10.3969/J.ISSN.1003-2053.2015.09.007
doi: 10.3969/J.ISSN.1003-2053.2015.09.007
Zhang Y (2013) The responsibility for carbon emissions and carbon efficiency at the sectoral level: evidence from China. Energy Econ 40:967–975. https://doi.org/10.1016/j.eneco.2013.05.025
Zhang C, Chen P (2021) Industrialization, urbanization, and carbon emission efficiency of Yangtze River Economic Belt-empirical analysis based on stochastic frontier model. Environ Sci Pollut R 28(47):66914–66929. https://doi.org/10.1007/s11356-021-15309-z
doi: 10.1007/s11356-021-15309-z
Zhang C, Cai WH, Yu TS (2013) Regional economic development and carbon productivity—a convergent and decoupling index analysis. China Ind Econ 5(5):18–30. https://doi.org/10.19581/J.CNKI.CIEJ0URNAL.2013.05.002
doi: 10.19581/J.CNKI.CIEJ0URNAL.2013.05.002
Zhang K, Xu D, Li S (2019) The impact of environmental regulation on environmental pollution in China: an empirical study based on the synergistic effect of industrial agglomeration. Environ Sci Pollut Res 26:25775–25788. https://doi.org/10.1007/s11356-019-05854-z
doi: 10.1007/s11356-019-05854-z
Zhang L, Xiong L, Cheng B, Yu C (2018) How does foreign trade influence China’s carbon productivity? Based on panel spatial lag model analysis. Struct Change Econ D 47:171–179. https://doi.org/10.1016/j.strueco.2018.08.008
doi: 10.1016/j.strueco.2018.08.008
Zhou K, Liu H, Wang Q (2019) The impact of economic agglomeration on water pollutant emissions from the perspective of spatial spillover effects. J Geogr Sci 29:2015–2030. https://doi.org/10.1007/s11442-019-1702-2
doi: 10.1007/s11442-019-1702-2