Automated measurement of total kidney volume from 3D ultrasound images of patients affected by polycystic kidney disease and comparison to MR measurements.


Journal

Abdominal radiology (New York)
ISSN: 2366-0058
Titre abrégé: Abdom Radiol (NY)
Pays: United States
ID NLM: 101674571

Informations de publication

Date de publication:
07 2022
Historique:
received: 21 02 2022
accepted: 04 04 2022
revised: 01 04 2022
pubmed: 28 4 2022
medline: 28 6 2022
entrez: 27 4 2022
Statut: ppublish

Résumé

Total kidney volume (TKV) is the most important imaging biomarker for quantifying the severity of autosomal-dominant polycystic kidney disease (ADPKD). 3D ultrasound (US) can accurately measure kidney volume compared to 2D US; however, manual segmentation is tedious and requires expert annotators. We investigated a deep learning-based approach for automated segmentation of TKV from 3D US in ADPKD patients. We used axially acquired 3D US-kidney images in 22 ADPKD patients where each patient and each kidney were scanned three times, resulting in 132 scans that were manually segmented. We trained a convolutional neural network to segment the whole kidney and measure TKV. All patients were subsequently imaged with MRI for measurement comparison. Our method automatically segmented polycystic kidneys in 3D US images obtaining an average Dice coefficient of 0.80 on the test dataset. The kidney volume measurement compared with linear regression coefficient and bias from human tracing were R This is the first study applying deep learning to 3D US in ADPKD. Our method shows promising performance for auto-segmentation of kidneys using 3D US to measure TKV, close to human tracing and MRI measurement. This imaging and analysis method may be useful in a number of settings, including pediatric imaging, clinical studies, and longitudinal tracking of patient disease progression.

Identifiants

pubmed: 35476147
doi: 10.1007/s00261-022-03521-5
pii: 10.1007/s00261-022-03521-5
pmc: PMC9226108
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

2408-2419

Subventions

Organisme : NIDDK NIH HHS
ID : P30 DK090728
Pays : United States
Organisme : NIDDK NIH HHS
ID : K01 DK110136
Pays : United States

Informations de copyright

© 2022. The Author(s).

Références

Investig Clin Urol. 2020 Nov;61(6):555-564
pubmed: 33135401
Kidney Dis (Basel). 2019 Mar;5(2):107-117
pubmed: 31019924
Clin J Am Soc Nephrol. 2009 Apr;4(4):719-25
pubmed: 19339416
Clin Nephrol. 2010 Jul;74(1):46-52
pubmed: 20557866
Med Image Anal. 2020 Feb;60:101602
pubmed: 31760193
Can J Kidney Health Dis. 2017 Mar 02;4:2054358117693355
pubmed: 28321323
Pediatr Nephrol. 2018 May;33(5):827-835
pubmed: 29306987
Abdom Radiol (NY). 2018 May;43(5):1215-1222
pubmed: 28871393
N Engl J Med. 2010 Aug 26;363(9):820-9
pubmed: 20581391
Kidney Int. 2015 Jul;88(1):146-51
pubmed: 25830764
Comput Methods Programs Biomed. 2018 Apr;157:49-67
pubmed: 29477435
Contrib Nephrol. 2016;188:69-80
pubmed: 27170301
Lancet. 2007 Apr 14;369(9569):1287-1301
pubmed: 17434405
AJR Am J Roentgenol. 2016 Sep;207(3):605-13
pubmed: 27341140
BMC Med Inform Decis Mak. 2019 Dec 12;19(Suppl 9):244
pubmed: 31830973
BMC Nephrol. 2017 Jan 14;18(1):22
pubmed: 28088190
Can J Kidney Health Dis. 2017 Mar 01;4:2054358117695784
pubmed: 28321325
J Digit Imaging. 2017 Aug;30(4):442-448
pubmed: 28550374
NPJ Digit Med. 2019 Apr 26;2:29
pubmed: 31304376
Nephrol Dial Transplant. 2016 Feb;31(2):241-8
pubmed: 26330562
Kidney Int Rep. 2017 Jan 16;2(3):442-450
pubmed: 29142971
Clin J Am Soc Nephrol. 2014 Mar;9(3):499-505
pubmed: 24311709
Hum Mol Genet. 1999;8(10):1861-6
pubmed: 10469838
Abdom Radiol (NY). 2021 Mar;46(3):1053-1061
pubmed: 32940759
J Am Soc Nephrol. 2019 Aug;30(8):1514-1522
pubmed: 31270136
Sci Rep. 2017 May 17;7(1):2049
pubmed: 28515418
J Digit Imaging. 2021 Aug;34(4):773-787
pubmed: 33821360
Am J Kidney Dis. 2015 Oct;66(4):564-76
pubmed: 25960302
J Big Data. 2021;8(1):101
pubmed: 34306963
J Am Soc Nephrol. 2015 Jan;26(1):160-72
pubmed: 24904092
Acad Radiol. 2018 Sep;25(9):1136-1145
pubmed: 29449144
Clin J Am Soc Nephrol. 2006 Jan;1(1):64-9
pubmed: 17699192
N Engl J Med. 2012 Dec 20;367(25):2407-18
pubmed: 23121377
PLoS One. 2015 Dec 07;10(12):e0144526
pubmed: 26641645

Auteurs

Jaidip M Jagtap (JM)

Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.

Adriana V Gregory (AV)

Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55905, USA.

Heather L Homes (HL)

Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.

Darryl E Wright (DE)

Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.

Marie E Edwards (ME)

Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.

Zeynettin Akkus (Z)

Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.

Bradley J Erickson (BJ)

Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA. bje@mayo.edu.

Timothy L Kline (TL)

Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA. kline.timothy@mayo.edu.
Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55905, USA. kline.timothy@mayo.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH