Differences between human and machine perception in medical diagnosis.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
27 04 2022
27 04 2022
Historique:
received:
30
09
2021
accepted:
06
04
2022
entrez:
28
4
2022
pubmed:
29
4
2022
medline:
30
4
2022
Statut:
epublish
Résumé
Deep neural networks (DNNs) show promise in image-based medical diagnosis, but cannot be fully trusted since they can fail for reasons unrelated to underlying pathology. Humans are less likely to make such superficial mistakes, since they use features that are grounded on medical science. It is therefore important to know whether DNNs use different features than humans. Towards this end, we propose a framework for comparing human and machine perception in medical diagnosis. We frame the comparison in terms of perturbation robustness, and mitigate Simpson's paradox by performing a subgroup analysis. The framework is demonstrated with a case study in breast cancer screening, where we separately analyze microcalcifications and soft tissue lesions. While it is inconclusive whether humans and DNNs use different features to detect microcalcifications, we find that for soft tissue lesions, DNNs rely on high frequency components ignored by radiologists. Moreover, these features are located outside of the region of the images found most suspicious by radiologists. This difference between humans and machines was only visible through subgroup analysis, which highlights the importance of incorporating medical domain knowledge into the comparison.
Identifiants
pubmed: 35477730
doi: 10.1038/s41598-022-10526-z
pii: 10.1038/s41598-022-10526-z
pmc: PMC9046399
doi:
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
6877Subventions
Organisme : NIBIB NIH HHS
ID : P41 EB017183
Pays : United States
Organisme : NIH HHS
ID : P41EB017183
Pays : United States
Organisme : NIH HHS
ID : R21CA225175
Pays : United States
Informations de copyright
© 2022. The Author(s).
Références
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149
pubmed: 27295650
Proc ACM Conf Health Inference Learn (2020). 2020 Apr;2020:151-159
pubmed: 33196064
Nature. 2017 Feb 2;542(7639):115-118
pubmed: 28117445
Mach Learn Med Imaging. 2019 Oct;11861:18-26
pubmed: 32149282
Med Image Anal. 2021 Feb;68:101908
pubmed: 33383334
PLoS Med. 2018 Nov 6;15(11):e1002683
pubmed: 30399157
Proc Mach Learn Res. 2020 Jul;121:827-842
pubmed: 34142092
Nature. 2020 Jan;577(7788):89-94
pubmed: 31894144
Lancet Digit Health. 2020 Mar;2(3):e138-e148
pubmed: 33334578
J Vis. 2021 Mar 1;21(3):16
pubmed: 33724362
Proc Natl Acad Sci U S A. 2020 Oct 27;117(43):26562-26571
pubmed: 33051296
Br J Radiol. 2017 Jul;90(1075):20160871
pubmed: 28508724
Nat Med. 2018 Oct;24(10):1559-1567
pubmed: 30224757
IEEE Trans Med Imaging. 2020 Apr;39(4):1184-1194
pubmed: 31603772
JAMA Netw Open. 2020 Mar 2;3(3):e200265
pubmed: 32119094
Lancet Digit Health. 2019 Oct;1(6):e271-e297
pubmed: 33323251
Nat Med. 2019 Jun;25(6):954-961
pubmed: 31110349
J Digit Imaging. 2014 Apr;27(2):231-6
pubmed: 24113845
Nat Med. 2020 Jun;26(6):900-908
pubmed: 32424212
J Natl Cancer Inst. 2019 Sep 1;111(9):916-922
pubmed: 30834436
Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):11591-11596
pubmed: 30348771
JAMA Dermatol. 2019 Oct 01;155(10):1135-1141
pubmed: 31411641
J Digit Imaging. 2021 Dec;34(6):1414-1423
pubmed: 34731338