Differences between human and machine perception in medical diagnosis.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
27 04 2022
Historique:
received: 30 09 2021
accepted: 06 04 2022
entrez: 28 4 2022
pubmed: 29 4 2022
medline: 30 4 2022
Statut: epublish

Résumé

Deep neural networks (DNNs) show promise in image-based medical diagnosis, but cannot be fully trusted since they can fail for reasons unrelated to underlying pathology. Humans are less likely to make such superficial mistakes, since they use features that are grounded on medical science. It is therefore important to know whether DNNs use different features than humans. Towards this end, we propose a framework for comparing human and machine perception in medical diagnosis. We frame the comparison in terms of perturbation robustness, and mitigate Simpson's paradox by performing a subgroup analysis. The framework is demonstrated with a case study in breast cancer screening, where we separately analyze microcalcifications and soft tissue lesions. While it is inconclusive whether humans and DNNs use different features to detect microcalcifications, we find that for soft tissue lesions, DNNs rely on high frequency components ignored by radiologists. Moreover, these features are located outside of the region of the images found most suspicious by radiologists. This difference between humans and machines was only visible through subgroup analysis, which highlights the importance of incorporating medical domain knowledge into the comparison.

Identifiants

pubmed: 35477730
doi: 10.1038/s41598-022-10526-z
pii: 10.1038/s41598-022-10526-z
pmc: PMC9046399
doi:

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

6877

Subventions

Organisme : NIBIB NIH HHS
ID : P41 EB017183
Pays : United States
Organisme : NIH HHS
ID : P41EB017183
Pays : United States
Organisme : NIH HHS
ID : R21CA225175
Pays : United States

Informations de copyright

© 2022. The Author(s).

Références

IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149
pubmed: 27295650
Proc ACM Conf Health Inference Learn (2020). 2020 Apr;2020:151-159
pubmed: 33196064
Nature. 2017 Feb 2;542(7639):115-118
pubmed: 28117445
Mach Learn Med Imaging. 2019 Oct;11861:18-26
pubmed: 32149282
Med Image Anal. 2021 Feb;68:101908
pubmed: 33383334
PLoS Med. 2018 Nov 6;15(11):e1002683
pubmed: 30399157
Proc Mach Learn Res. 2020 Jul;121:827-842
pubmed: 34142092
Nature. 2020 Jan;577(7788):89-94
pubmed: 31894144
Lancet Digit Health. 2020 Mar;2(3):e138-e148
pubmed: 33334578
J Vis. 2021 Mar 1;21(3):16
pubmed: 33724362
Proc Natl Acad Sci U S A. 2020 Oct 27;117(43):26562-26571
pubmed: 33051296
Br J Radiol. 2017 Jul;90(1075):20160871
pubmed: 28508724
Nat Med. 2018 Oct;24(10):1559-1567
pubmed: 30224757
IEEE Trans Med Imaging. 2020 Apr;39(4):1184-1194
pubmed: 31603772
JAMA Netw Open. 2020 Mar 2;3(3):e200265
pubmed: 32119094
Lancet Digit Health. 2019 Oct;1(6):e271-e297
pubmed: 33323251
Nat Med. 2019 Jun;25(6):954-961
pubmed: 31110349
J Digit Imaging. 2014 Apr;27(2):231-6
pubmed: 24113845
Nat Med. 2020 Jun;26(6):900-908
pubmed: 32424212
J Natl Cancer Inst. 2019 Sep 1;111(9):916-922
pubmed: 30834436
Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):11591-11596
pubmed: 30348771
JAMA Dermatol. 2019 Oct 01;155(10):1135-1141
pubmed: 31411641
J Digit Imaging. 2021 Dec;34(6):1414-1423
pubmed: 34731338

Auteurs

Taro Makino (T)

Center for Data Science, New York University, New York, NY, USA. taro@nyu.edu.
Department of Radiology, NYU Langone Health, New York, NY, USA. taro@nyu.edu.

Stanisław Jastrzębski (S)

Center for Data Science, New York University, New York, NY, USA.
Department of Radiology, NYU Langone Health, New York, NY, USA.
Center for Advanced Imaging Innovation and Research, NYU Langone Health, New York, NY, USA.

Witold Oleszkiewicz (W)

Faculty of Electronics and Information Technology, Warsaw University of Technology, Warszawa, Poland.

Celin Chacko (C)

Department of Radiology, NYU Langone Health, New York, NY, USA.

Robin Ehrenpreis (R)

Department of Radiology, NYU Langone Health, New York, NY, USA.

Naziya Samreen (N)

Department of Radiology, NYU Langone Health, New York, NY, USA.

Chloe Chhor (C)

Department of Radiology, NYU Langone Health, New York, NY, USA.

Eric Kim (E)

Department of Radiology, NYU Langone Health, New York, NY, USA.

Jiyon Lee (J)

Department of Radiology, NYU Langone Health, New York, NY, USA.

Kristine Pysarenko (K)

Department of Radiology, NYU Langone Health, New York, NY, USA.

Beatriu Reig (B)

Department of Radiology, NYU Langone Health, New York, NY, USA.
Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.

Hildegard Toth (H)

Department of Radiology, NYU Langone Health, New York, NY, USA.
Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.

Divya Awal (D)

Department of Radiology, NYU Langone Health, New York, NY, USA.

Linda Du (L)

Department of Radiology, NYU Langone Health, New York, NY, USA.

Alice Kim (A)

Department of Radiology, NYU Langone Health, New York, NY, USA.

James Park (J)

Department of Radiology, NYU Langone Health, New York, NY, USA.

Daniel K Sodickson (DK)

Department of Radiology, NYU Langone Health, New York, NY, USA.
Center for Advanced Imaging Innovation and Research, NYU Langone Health, New York, NY, USA.
Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA.
Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.

Laura Heacock (L)

Department of Radiology, NYU Langone Health, New York, NY, USA.
Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.

Linda Moy (L)

Department of Radiology, NYU Langone Health, New York, NY, USA.
Center for Advanced Imaging Innovation and Research, NYU Langone Health, New York, NY, USA.
Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA.
Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.

Kyunghyun Cho (K)

Center for Data Science, New York University, New York, NY, USA.
Department of Computer Science, Courant Institute, New York University, New York, NY, USA.

Krzysztof J Geras (KJ)

Center for Data Science, New York University, New York, NY, USA. k.j.geras@nyu.edu.
Department of Radiology, NYU Langone Health, New York, NY, USA. k.j.geras@nyu.edu.
Center for Advanced Imaging Innovation and Research, NYU Langone Health, New York, NY, USA. k.j.geras@nyu.edu.
Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA. k.j.geras@nyu.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH