Skull modulated strategies to intensify tumor treating fields on brain tumor: a finite element study.

Brain tumor Cranioplasty Finite element analysis Skull remodeling Tumor treating fields

Journal

Biomechanics and modeling in mechanobiology
ISSN: 1617-7940
Titre abrégé: Biomech Model Mechanobiol
Pays: Germany
ID NLM: 101135325

Informations de publication

Date de publication:
Aug 2022
Historique:
received: 16 05 2021
accepted: 25 03 2022
pubmed: 29 4 2022
medline: 19 7 2022
entrez: 28 4 2022
Statut: ppublish

Résumé

Tumor treating fields (TTFields) are a breakthrough in treating glioblastoma (GBM), whereas the intensity cannot be further enhanced, due to the limitation of scalp lesions. Skull remodeling (SR) surgery can elevate the treatment dose of TTFields in the intracranial foci. This study was aimed at exploring the characteristics of the skull modulated strategies toward TTFields augmentation. The simplified multiple-tissue-layer model (MTL) and realistic head (RH) model were reconstructed through finite element methods (FEM), to simulate the remodeling of the skull, which included skull drilling, thinning, and cranioplasty with PEEK, titanium, cerebrospinal fluid (CSF), connective tissue and autologous bone. Skull thinning could enhance the intensity of TTFields in the brain tumor, with a 10% of increase in average peritumoral intensity (API) by every 1 cm decrease in skull thickness. Cranioplasty with titanium accompanied the most enhancement of TTFields in the MTL model, but CSF was superior in TTFields enhancement when simulated in the RH model. Besides, API increased nonlinearly with the expansion of drilled burr holes. In comparison with the single drill replaced by titanium, nine burr holes could reach 96.98% of enhancement in API, but it could only reach 63.08% of enhancement under craniectomy of nine times skull defect area. Skull thinning and drilling could enhance API, which was correlated with the number and area of skull drilling. Cranioplasty with highly conductive material could also augment API, but might not provide clinical benefits as expected.

Identifiants

pubmed: 35477828
doi: 10.1007/s10237-022-01580-7
pii: 10.1007/s10237-022-01580-7
doi:

Substances chimiques

Titanium D1JT611TNE

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1133-1144

Subventions

Organisme : Tsinghua University Initiative Scientific Research Program
ID : 20191080597
Organisme : Tsinghua University-Peking Union Medical College Hospital Initiative Scientific Research Program
ID : 2019ZLH101

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Ballo MT, Urman N, Lavy-Shahaf G, Grewal J, Bomzon Z, Toms S (2019) Correlation of tumor treating fields dosimetry to survival outcomes in newly diagnosed glioblastoma: a large-scale numerical simulation-based analysis of data from the phase 3 EF-14 randomized trial. Int J Radiat Oncol Biol Phys 104:1106–1113
doi: 10.1016/j.ijrobp.2019.04.008
Batchelor TT, Mulholland P, Neyns B, Nabors LB, Campone M, Wick A, Mason W, Mikkelsen T, Phuphanich S, Ashby LS, Degroot J, Gattamaneni R, Cher L, Rosenthal M, Payer F, Jürgensmeier JM, Jain RK, Sorensen AG, Xu J, Liu Q, Van Den Bent M (2013) Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma. J Clin Oncol 31:3212–3218
doi: 10.1200/JCO.2012.47.2464
Benson L (2018) Tumor treating fields technology: alternating electric field therapy for the treatment of solid tumors. Semin Oncol Nurs 34:137–150
doi: 10.1016/j.soncn.2018.03.005
Bomzon Z, Hershkovich HS, Urman N, Chaudhry A, Garcia-Carracedo D, Korshoej AR, Weinberg U, Wenger C, Miranda P, Wasserman Y, Kirson ED, Yoram (2016) Using computational phantoms to improve delivery of Tumor Treating Fields (TTFields) to patients. Annu Int Conf IEEE Eng Med Biol Soc 2016:6461–6464
Carrieri FA, Smack C, Siddiqui I, Kleinberg LR, Tran PT (2020) Tumor treating fields: at the crossroads between physics and biology for cancer treatment. Front Oncol 10:575992
doi: 10.3389/fonc.2020.575992
Ceresoli GL, Aerts JG, Dziadziuszko R, Ramlau R, Cedres S, Van Meerbeeck JP, Mencoboni M, Planchard D, Chella A, Crinò L, Krzakowski M, Rüssel J, Maconi A, Gianoncelli L, Grosso F (2019) Tumour treating fields in combination with pemetrexed and cisplatin or carboplatin as first-line treatment for unresectable malignant pleural mesothelioma (STELLAR): a multicentre, single-arm phase 2 trial. Lancet Oncol 20:1702–1709
doi: 10.1016/S1470-2045(19)30532-7
Gentilal N, Miranda PC (2020) Heat transfer during TTFields treatment: Influence of the uncertainty of the electric and thermal parameters on the predicted temperature distribution. Comput Methods Programs Biomed 196:105706
doi: 10.1016/j.cmpb.2020.105706
Gentilal N, Salvador R, Miranda PC (2019) Temperature control in TTFields therapy of GBM: impact on the duty cycle and tissue temperature. Phys Med Biol 64:225008
doi: 10.1088/1361-6560/ab5323
Giladi M, Schneiderman RS, Porat Y, Munster M, Itzhaki A, Mordechovich D, Cahal S, Kirson ED, Weinberg U, Palti Y (2014a) Mitotic disruption and reduced clonogenicity of pancreatic cancer cells in vitro and in vivo by tumor treating fields. Pancreatology 14:54–63
doi: 10.1016/j.pan.2013.11.009
Giladi M, Weinberg U, Schneiderman RS, Porat Y, Munster M, Voloshin T, Blatt R, Cahal S, Itzhaki A, Onn A, Kirson ED, Palti Y (2014b) Alternating electric fields (tumor-treating fields therapy) can improve chemotherapy treatment efficacy in non-small cell lung cancer both in vitro and in vivo. Semin Oncol 41(Suppl 6):S35-41
doi: 10.1053/j.seminoncol.2014.09.006
Gilbert MR, Wang M, Aldape KD, Stupp R, Hegi ME, Jaeckle KA, Armstrong TS, Wefel JS, Won M, Blumenthal DT, Mahajan A, Schultz CJ, Erridge S, Baumert B, Hopkins KI, Tzuk-Shina T, Brown PD, Chakravarti A, Curran WJ Jr, Mehta MP (2013) Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol 31:4085–4091
doi: 10.1200/JCO.2013.49.6968
Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, Colman H, Chakravarti A, Pugh S, Won M, Jeraj R, Brown PD, Jaeckle KA, Schiff D, Stieber VW, Brachman DG, Werner-Wasik M, Tremont-Lukats IW, Sulman EP, Aldape KD, Curran WJ Jr, Mehta MP (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370:699–708
doi: 10.1056/NEJMoa1308573
Jay-Jiguang Zhu RTOD, Samuel Goldlust ZR (2020) CTNI-77-EF-19, a post-approval registry study of tumor treating fields (TTFields) o recurrent glioblastoma (rGBM). Neuro-Oncology 22:ii60
Karanam NK, Srinivasan K, Ding L, Sishc B, Saha D, Story MD (2017) Tumor-treating fields elicit a conditional vulnerability to ionizing radiation via the downregulation of BRCA1 signaling and reduced DNA double-strand break repair capacity in non-small cell lung cancer cell lines. Cell Death Dis 8:e2711
doi: 10.1038/cddis.2017.136
Karanam NK, Story MD (2020) An overview of potential novel mechanisms of action underlying tumor treating fields-induced cancer cell death and their clinical implications. Int J Radiat Biol 1–11
Kesari S, Ram Z (2017) Tumor-treating fields plus chemotherapy versus chemotherapy alone for glioblastoma at first recurrence: a post hoc analysis of the EF-14 trial. CNS Oncol 6:185–193
doi: 10.2217/cns-2016-0049
Kirson ED, Gurvich Z, Schneiderman R, Dekel E, Itzhaki A, Wasserman Y, Schatzberger R, Palti Y (2004) Disruption of cancer cell replication by alternating electric fields. Cancer Res 64:3288–3295
doi: 10.1158/0008-5472.CAN-04-0083
Korshoej AR, Saturnino GB, Rasmussen LK, Von Oettingen G, Sørensen JC, Thielscher A (2016) Enhancing predicted efficacy of tumor treating fields therapy of glioblastoma using targeted surgical craniectomy: a computer modeling study. PLoS ONE 11:e0164051
doi: 10.1371/journal.pone.0164051
Korshoej AR, Mikic N, Hansen FL, Saturnino GB, Thielscher A, Bomzon ZE (2019a) Enhancing tumor treating fields therapy with skull-remodeling surgery. The role of finite element methods in surgery planning. Conference proceedings: … annual international conference of the IEEE engineering in medicine and biology society. IEEE engineering in medicine and biology society. Ann Conf 2019:6995–6997
Korshoej AR, Sorensen JCH, Von Oettingen G, Poulsen FR, Thielscher A (2019b) Optimization of tumor treating fields using singular value decomposition and minimization of field anisotropy. Phys Med Biol 64:04NT03
doi: 10.1088/1361-6560/aafe54
Korshoej AR, Hansen FL, Thielscher A, Von Oettingen GB, Sørensen JCH (2017) Impact of tumor position, conductivity distribution and tissue homogeneity on the distribution of tumor treating fields in a human brain: a computer modeling study. PLoS One 12:e0179214
Korshoej AR, Hansen FL, Mikic N, Von Oettingen G, Sorensen JCH, Thielscher A (2018) Importance of electrode position for the distribution of tumor treating fields (TTFields) in a human brain. Identification of effective layouts through systematic analysis of array positions for multiple tumor locations. PLoS One 13:e0201957
Korshoej AR, Lukacova S, Lassen-Ramshad Y, Rahbek C, Severinsen KE, Guldberg TL, Mikic N, Jensen MH, Cortnum SOS, Von Oettingen G, Sorensen JCH (2020) OptimalTTF-1: enhancing tumor treating fields therapy with skull remodeling surgery. A clinical phase I trial in adult recurrent glioblastoma. Neurooncol Adv 2:vdaa121
Kuang X-J (2006) Discussion on dielectric constant of metal. J Sichuan Univ Sci Eng 2:75–78
Lang ST, Gan LS, Mclennan C, Monchi O, Kelly JJP (2020) Impact of peritumoral edema during tumor treatment field therapy: a computational modelling study. IEEE Trans Biomed Eng 67:3327–3338
doi: 10.1109/TBME.2020.2983653
Liau LM, Ashkan K, Tran DD, Campian JL, Trusheim JE, Cobbs CS, Heth JA, Salacz M, Taylor S, D’andre SD, Iwamoto FM, Dropcho EJ, Moshel YA, Walter KA, Pillainayagam CP, Aiken R, Chaudhary R, Goldlust SA, Bota DA, Duic P, Grewal J, Elinzano H, Toms SA, Lillehei KO, Mikkelsen T, Walbert T, Abram SR, Brenner AJ, Brem S, Ewend MG, Khagi S, Portnow J, Kim LJ, Loudon WG, Thompson RC, Avigan DE, Fink KL, Geoffroy FJ, Lindhorst S, Lutzky J, Sloan AE, Schackert G, Krex D, Meisel HJ, Wu J, Davis RP, Duma C, Etame AB, Mathieu D, Kesari S, Piccioni D, Westphal M, Baskin DS, New PZ, Lacroix M, May SA, Pluard TJ, Tse V, Green RM, Villano JL, Pearlman M, Petrecca K, Schulder M, Taylor LP, Maida AE, Prins RM, Cloughesy TF, Mulholland P, Bosch ML (2018) First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med 16:142
doi: 10.1186/s12967-018-1507-6
Miranda PC, Mekonnen A, Salvador R, Basser PJ (2014) Predicting the electric field distribution in the brain for the treatment of glioblastoma. Phys Med Biol 59:4137–4147
doi: 10.1088/0031-9155/59/15/4137
Mrugala MM, Engelhard HH, Dinh Tran D, Kew Y, Cavaliere R, Villano JL, Annenelie Bota D, Rudnick J, Love Sumrall A, Zhu JJ, Butowski N (2014) Clinical practice experience with NovoTTF-100A system for glioblastoma: the patient registry dataset (PRiDe). Semin Oncol 41(Suppl 6):S4-s13
doi: 10.1053/j.seminoncol.2014.09.010
Mun EJ, Babiker HM, Weinberg U, Kirson ED, Von Hoff DD (2018) Tumor-treating fields: a fourth modality in cancer treatment. Clin Cancer Res 24:266–275
doi: 10.1158/1078-0432.CCR-17-1117
Narita Y, Arakawa Y, Yamasaki F, Nishikawa R, Aoki T, Kanamori M, Nagane M, Kumabe T, Hirose Y, Ichikawa T, Kobayashi H, Fujimaki T, Goto H, Takeshima H, Ueba T, Abe H, Tamiya T, Sonoda Y, Natsume A, Kakuma T, Sugita Y, Komatsu N, Yamada A, Sasada T, Matsueda S, Shichijo S, Itoh K, Terasaki M (2019) A randomized, double-blind, phase III trial of personalized peptide vaccination for recurrent glioblastoma. Neuro Oncol 21:348–359
doi: 10.1093/neuonc/noy200
Onken J, Goerling U, Heinrich M, Pleissner S, Krex D, Vajkoczy P, Misch M (2019) Patient reported outcome (PRO) among high-grade glioma patients receiving TTFields treatment: a two center observational study. Front Neurol 10:1026
doi: 10.3389/fneur.2019.01026
Rominiyi O, Vanderlinden A, Clenton SJ, Bridgewater C, Al-Tamimi Y, Collis SJ (2020) Tumour treating fields therapy for glioblastoma: current advances and future directions. Br J Cancer
Stupp R, Mason WP, Van Den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996
doi: 10.1056/NEJMoa043330
Stupp R, Wong ET, Kanner AA, Steinberg D, Engelhard H, Heidecke V, Kirson ED, Taillibert S, Liebermann F, Dbaly V, Ram Z, Villano JL, Rainov N, Weinberg U, Schiff D, Kunschner L, Raizer J, Honnorat J, Sloan A, Malkin M, Landolfi JC, Payer F, Mehdorn M, Weil RJ, Pannullo SC, Westphal M, Smrcka M, Chin L, Kostron H, Hofer S, Bruce J, Cosgrove R, Paleologous N, Palti Y, Gutin PH (2012) NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer 48:2192–2202
doi: 10.1016/j.ejca.2012.04.011
Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, Toms S, Idbaih A, Ahluwalia MS, Fink K, Di Meco F, Lieberman F, Zhu JJ, Stragliotto G, Tran D, Brem S, Hottinger A, Kirson ED, Lavy-Shahaf G, Weinberg U, Kim CY, Paek SH, Nicholas G, Bruna J, Hirte H, Weller M, Palti Y, Hegi ME, Ram Z (2017) Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA 318:2306–2316
doi: 10.1001/jama.2017.18718
Sun YS (2018) Direct-current electric field distribution in the brain for tumor treating field applications: a simulation study. Comput Math Methods Med 2018:3829768
doi: 10.1155/2018/3829768
Thielscher A, Antunes A, Saturnino G.B (2015) Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS? IEEE EMBS 2015, Milano, Italy
Trusheim J, Dunbar E, Battiste J, Iwamoto F, Mohile N, Damek D, Bota DA, Connelly J (2017) A state-of-the-art review and guidelines for tumor treating fields treatment planning and patient follow-up in glioblastoma. CNS Oncol 6:29–43
doi: 10.2217/cns-2016-0032
Voloshin T, Munster M, Blatt R, Shteingauz A, Roberts PC, Schmelz EM, Giladi M, Schneiderman RS, Zeevi E, Porat Y, Bomzon Z, Urman N, Itzhaki A, Cahal S, Kirson ED, Weinberg U, Palti Y (2016) Alternating electric fields (TTFields) in combination with paclitaxel are therapeutically effective against ovarian cancer cells in vitro and in vivo. Int J Cancer 139:2850–2858
doi: 10.1002/ijc.30406
Vymazal J, Wong ET (2014) Response patterns of recurrent glioblastomas treated with tumor-treating fields. Semin Oncol 41(Suppl 6):S14-24
doi: 10.1053/j.seminoncol.2014.09.009
Weller M, Tabatabai G, Kästner B, Felsberg J, Steinbach JP, Wick A, Schnell O, Hau P, Herrlinger U, Sabel MC, Wirsching HG, Ketter R, Bähr O, Platten M, Tonn JC, Schlegel U, Marosi C, Goldbrunner R, Stupp R, Homicsko K, Pichler J, Nikkhah G, Meixensberger J, Vajkoczy P, Kollias S, Hüsing J, Reifenberger G, Wick W (2015) MGMT promoter methylation is a strong prognostic biomarker for benefit from dose-intensified temozolomide rechallenge in progressive glioblastoma: the DIRECTOR trial. Clin Cancer Res 21:2057–2064
doi: 10.1158/1078-0432.CCR-14-2737
Wenger C, Salvador R, Basser PJ, Miranda PC (2015) Modeling tumor treating fields (TTFields) application within a realistic human head model. Annu Int Conf IEEE Eng Med Biol Soc 2015:2555–2558
Wenger C, Miranda PC, Salvador R, Thielscher A, Bomzon Z, Giladi M, Mrugala MM, Korshoej AR (2018) A review on tumor-treating fields (TTFields): clinical implications inferred from computational modeling. IEEE Rev Biomed Eng 11:195–207
doi: 10.1109/RBME.2017.2765282
Westphal M, Ylä-Herttuala S, Martin J, Warnke P, Menei P, Eckland D, Kinley J, Kay R, Ram Z (2013) Adenovirus-mediated gene therapy with sitimagene ceradenovec followed by intravenous ganciclovir for patients with operable high-grade glioma (ASPECT): a randomised, open-label, phase 3 trial. Lancet Oncol 14:823–833
doi: 10.1016/S1470-2045(13)70274-2
Westphal M, Heese O, Steinbach JP, Schnell O, Schackert G, Mehdorn M, Schulz D, Simon M, Schlegel U, Senft C, Geletneky K, Braun C, Hartung JG, Reuter D, Metz MW, Bach F, Pietsch T (2015) A randomised, open label phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma. Eur J Cancer 51:522–532
doi: 10.1016/j.ejca.2014.12.019
Wick W, Gorlia T, Bendszus M, Taphoorn M, Sahm F, Harting I, Brandes AA, Taal W, Domont J, Idbaih A, Campone M, Clement PM, Stupp R, Fabbro M, Le Rhun E, Dubois F, Weller M, Von Deimling A, Golfinopoulos V, Bromberg JC, Platten M, Klein M, Van Den Bent MJ (2017) Lomustine and Bevacizumab in Progressive Glioblastoma. N Engl J Med 377:1954–1963
doi: 10.1056/NEJMoa1707358

Auteurs

Xin Yang (X)

National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China.

Penghao Liu (P)

Departments of Neurosurgery, Peking Union Medical College Hospital (East), Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China.

Hao Xing (H)

Departments of Neurosurgery, Peking Union Medical College Hospital (East), Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China.

Xiaoyan Wen (X)

National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China.

Yu Wang (Y)

Departments of Neurosurgery, Peking Union Medical College Hospital (East), Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China.

Chunhua Hu (C)

National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China. huchunhua@tsinghua.edu.cn.

Luming Li (L)

National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China. lilm@tsinghua.edu.cn.
Precision Medicine & Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518071, China. lilm@tsinghua.edu.cn.
IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China. lilm@tsinghua.edu.cn.
Institute of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100093, China. lilm@tsinghua.edu.cn.

Wenbin Ma (W)

Departments of Neurosurgery, Peking Union Medical College Hospital (East), Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China. mawb2001@hotmail.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH