Opportunities and challenges in cardiac tissue engineering from an analysis of two decades of advances.


Journal

Nature biomedical engineering
ISSN: 2157-846X
Titre abrégé: Nat Biomed Eng
Pays: England
ID NLM: 101696896

Informations de publication

Date de publication:
04 2022
Historique:
received: 13 05 2021
accepted: 08 03 2022
entrez: 28 4 2022
pubmed: 29 4 2022
medline: 30 4 2022
Statut: ppublish

Résumé

Engineered human cardiac tissues facilitate progress in regenerative medicine, disease modelling and drug development. In this Perspective, we reflect on the most notable advances in cardiac tissue engineering from the past two decades by analysing pivotal studies and critically examining the most consequential developments. This retrospective analysis led us to identify key milestones and to outline a set of opportunities, along with their associated challenges, for the further advancement of engineered human cardiac tissues.

Identifiants

pubmed: 35478227
doi: 10.1038/s41551-022-00885-3
pii: 10.1038/s41551-022-00885-3
doi:

Types de publication

Journal Article Review Research Support, U.S. Gov't, Non-P.H.S. Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

327-338

Subventions

Organisme : NHLBI NIH HHS
ID : F30 HL145921
Pays : United States
Organisme : NIBIB NIH HHS
ID : UH3 EB025765
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL076485
Pays : United States
Organisme : NIBIB NIH HHS
ID : P41 EB027062
Pays : United States

Informations de copyright

© 2022. Springer Nature Limited.

Références

Fine, B. & Vunjak-Novakovic, G. Shortcomings of animal models and the rise of engineered human cardiac tissue. ACS Biomater. Sci. Eng. 3, 1884–1897 (2017).
pubmed: 33440547 doi: 10.1021/acsbiomaterials.6b00662
Masashi, K. et al. Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 126, S29–S37 (2012).
Weinberger, F. et al. Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells. Sci. Transl. Med. 8, 363ra148 (2016).
pubmed: 27807283 doi: 10.1126/scitranslmed.aaf8781
Riegler, J. et al. Human engineered heart muscles engraft and survive long term in a rodent myocardial infarction model. Circ. Res. 117, 720–730 (2015).
pubmed: 26291556 pmcid: 4679370 doi: 10.1161/CIRCRESAHA.115.306985
Itzhaki, I. et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471, 225–229 (2011).
pubmed: 21240260 doi: 10.1038/nature09747
Tavakol, D. N., Fleischer, S. & Vunjak-Novakovic, G. Harnessing organs-on-a-chip to model tissue regeneration. Cell Stem Cell 28, 993–1015 (2021).
pubmed: 34087161 doi: 10.1016/j.stem.2021.05.008
Braam, S. R. et al. Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Res. 4, 107–116 (2010).
pubmed: 20034863 doi: 10.1016/j.scr.2009.11.004
Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).
pubmed: 9804556 doi: 10.1126/science.282.5391.1145
Itskovitz-Eldor, J. et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol. Med. 6, 88–95 (2000).
pubmed: 10859025 pmcid: 1949933 doi: 10.1007/BF03401776
Kehat, I. et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108, 407–414 (2001).
pubmed: 11489934 pmcid: 209357 doi: 10.1172/JCI200112131
Mummery, C. et al. Differentiation of human embryonic stem cells to cardiomyocytes. Circulation 107, 2733–2740 (2003).
pubmed: 12742992 doi: 10.1161/01.CIR.0000068356.38592.68
Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).
pubmed: 18035408 doi: 10.1016/j.cell.2007.11.019
Zhang, J. et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res. 104, e30–e41 (2009).
pubmed: 19213953 pmcid: 2741334
Gherghiceanu, M. et al. Cardiomyocytes derived from human embryonic and induced pluripotent stem cells: comparative ultrastructure. J. Cell. Mol. Med. 15, 2539–2551 (2011).
pubmed: 21883888 pmcid: 3822963 doi: 10.1111/j.1582-4934.2011.01417.x
Lee, J. H., Protze, S. I., Laksman, Z., Backx, P. H. & Keller, G. M. Human pluripotent stem cell-derived atrial and ventricular cardiomyocytes develop from distinct mesoderm populations. Cell Stem Cell 21, 179–194.e4 (2017).
pubmed: 28777944 doi: 10.1016/j.stem.2017.07.003
Protze, S. I. et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat. Biotechnol. 35, 56–68 (2017).
pubmed: 27941801 doi: 10.1038/nbt.3745
Cyganek, L. et al. Deep phenotyping of human induced pluripotent stem cell-derived atrial and ventricular cardiomyocytes. JCI Insight 3, e99941 (2018).
Zhao, Y. et al. A platform for generation of chamber-specific cardiac tissues and disease modeling. Cell 176, 913–927.e18 (2019).
pubmed: 30686581 pmcid: 6456036 doi: 10.1016/j.cell.2018.11.042
Lemme, M. et al. Atrial-like engineered heart tissue: an in vitro model of the human atrium. Stem Cell Rep. 11, 1378–1390 (2018).
doi: 10.1016/j.stemcr.2018.10.008
Goldfracht, I. et al. Generating ring-shaped engineered heart tissues from ventricular and atrial human pluripotent stem cell-derived cardiomyocytes. Nat. Commun. 11, 75 (2020).
pubmed: 31911598 pmcid: 6946709 doi: 10.1038/s41467-019-13868-x
Zhou, P. & Pu, W. T. Recounting cardiac cellular composition. Circ. Res. 118, 368–370 (2016).
pubmed: 26846633 pmcid: 4755297 doi: 10.1161/CIRCRESAHA.116.308139
Tian, Y & Morrisey, E. Importance of myocyte-nonmyocyte interactions in cardiac development and disease. Circ. Res. 110, 1023–1034 (2012).
pubmed: 22461366 pmcid: 3366271 doi: 10.1161/CIRCRESAHA.111.243899
Iyer, D. et al. Robust derivation of epicardium and its differentiated smooth muscle cell progeny from human pluripotent stem cells. Development 142, 1528–1541 (2015).
pubmed: 25813541 pmcid: 4392600
Bao, X. et al. Long-term self-renewing human epicardial cells generated from pluripotent stem cells under defined xeno-free conditions. Nat. Biomed. Eng. 1, 0003 (2016).
Zhang, J. et al. Functional cardiac fibroblasts derived from human pluripotent stem cells via second heart field progenitors. Nat. Commun. 10, 2238 (2019).
pubmed: 31110246 pmcid: 6527555 doi: 10.1038/s41467-019-09831-5
Zhang, H. et al. Generation of quiescent cardiac fibroblasts from human induced pluripotent stem cells for in vitro modeling of cardiac fibrosis. Circ. Res. 125, 552–566 (2019).
pubmed: 31288631 pmcid: 6768436 doi: 10.1161/CIRCRESAHA.119.315491
Moretti, A. et al. Multipotent embryonic Isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127, 1151–1165 (2006).
pubmed: 17123592 doi: 10.1016/j.cell.2006.10.029
Palpant, N. J. et al. Inhibition of β-catenin signaling respecifies anterior-like endothelium into beating human cardiomyocytes. Development 142, 3198–3209 (2015).
pubmed: 26153229 pmcid: 4582173
Giacomelli, E. et al. Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells. Development 144, 1008–1017 (2017).
pubmed: 28279973 pmcid: 5358113
Palpant, N. J. et al. Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. Nat. Protoc. 12, 15–31 (2017).
pubmed: 27906170 doi: 10.1038/nprot.2016.153
Passier, R. et al. Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells 23, 772–780 (2005).
pubmed: 15917473 doi: 10.1634/stemcells.2004-0184
Burridge, P. W. et al. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PLoS ONE 6, e18293 (2011).
pubmed: 21494607 pmcid: 3072973 doi: 10.1371/journal.pone.0018293
Freund, C. et al. Insulin redirects differentiation from cardiogenic mesoderm and endoderm to neuroectoderm in differentiating human embryonic stem cells. Stem Cells 26, 724–733 (2008).
pubmed: 18096723 doi: 10.1634/stemcells.2007-0617
Cao, N. et al. Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells. Cell Res. 22, 219–236 (2012).
pubmed: 22143566 doi: 10.1038/cr.2011.195
Kattman, S. J. et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8, 228–240 (2011).
pubmed: 21295278 doi: 10.1016/j.stem.2010.12.008
Lian, X. et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc. Natl Acad. Sci. USA 109, E1848–E1857 (2012).
pubmed: 22645348 pmcid: 3390875 doi: 10.1073/pnas.1200250109
Burridge, P. W. et al. Chemically defined and small molecule-based generation of human cardiomyocytes. Nat. Methods 11, 855–860 (2014).
pubmed: 24930130 pmcid: 4169698 doi: 10.1038/nmeth.2999
Matsuura, K. et al. Creation of human cardiac cell sheets using pluripotent stem cells. Biochem. Biophys. Res. Commun. 425, 321–327 (2012).
pubmed: 22842572 doi: 10.1016/j.bbrc.2012.07.089
Hamad, S. et al. Generation of human induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer and scalable 3D suspension bioreactor cultures with reduced batch-to-batch variations. Theranostics 9, 7222–7238 (2019).
pubmed: 31695764 pmcid: 6831300 doi: 10.7150/thno.32058
Ashok, P., Parikh, A., Du, C. & Tzanakakis, E. S. Xenogeneic-free system for biomanufacturing of cardiomyocyte progeny from human pluripotent stem cells. Front. Bioeng. Biotechnol. 8, 571425 (2020).
pubmed: 33195131 pmcid: 7644809 doi: 10.3389/fbioe.2020.571425
Buikema, J. W. et al. Wnt activation and reduced cell-cell contact synergistically induce massive expansion of functional human ipsc-derived cardiomyocytes. Cell Stem Cell 27, 50–63.e5 (2020).
pubmed: 32619518 pmcid: 7334437 doi: 10.1016/j.stem.2020.06.001
Xu, C., Police, S., Rao, N. & Carpenter, M. K. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ. Res. 91, 501–508 (2002).
pubmed: 12242268 doi: 10.1161/01.RES.0000035254.80718.91
Huber, I. et al. Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. FASEB J. 21, 2551–2563 (2007).
pubmed: 17435178 doi: 10.1096/fj.05-5711com
Anderson, D. et al. Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol. Ther. 15, 2027–2036 (2007).
pubmed: 17895862 doi: 10.1038/sj.mt.6300303
Dubois, N. C. et al. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat. Biotechnol. 29, 1011–1018 (2011).
pubmed: 22020386 pmcid: 4949030 doi: 10.1038/nbt.2005
Tohyama, S. et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12, 127–137 (2013).
pubmed: 23168164 doi: 10.1016/j.stem.2012.09.013
Mannhardt, I. et al. Comparison of 10 control hPSC lines for drug screening in an engineered heart tissue format. Stem Cell Rep. 15, 983–998 (2020).
doi: 10.1016/j.stemcr.2020.09.002
He, J.-Q., Ma, Y., Lee, Y., Thomson, J. A. & Kamp, T. J. Human embryonic stem cells develop into multiple types of cardiac myocytes. Circ. Res. 93, 32–39 (2003).
pubmed: 12791707 doi: 10.1161/01.RES.0000080317.92718.99
van den Berg, C. W. et al. Transcriptome of human foetal heart compared with cardiomyocytes from pluripotent stem cells. Development 142, 3231–3238 (2015).
pubmed: 26209647
Robertson, C., Tran, D. D. & George, S. C. Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 31, 829–837 (2013).
pubmed: 23355363 doi: 10.1002/stem.1331
Zhang, D. et al. Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials 34, 5813–5820 (2013).
pubmed: 23642535 pmcid: 3660435 doi: 10.1016/j.biomaterials.2013.04.026
Chun, Y. W. et al. Combinatorial polymer matrices enhance in vitro maturation of human induced pluripotent stem cell-derived cardiomyocytes. Biomaterials 67, 52–64 (2015).
pubmed: 26204225 pmcid: 4550551 doi: 10.1016/j.biomaterials.2015.07.004
Tiburcy, M. et al. Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation 135, 1832–1847 (2017).
pubmed: 28167635 pmcid: 5501412 doi: 10.1161/CIRCULATIONAHA.116.024145
Majid, Q. A. et al. Natural biomaterials for cardiac tissue engineering: a highly biocompatible solution. Front. Cardiovasc. Med. 7, 554597 (2020).
pubmed: 33195451 pmcid: 7644890 doi: 10.3389/fcvm.2020.554597
Branco, M. A. et al. Transcriptomic analysis of 3D cardiac differentiation of human induced pluripotent stem cells reveals faster cardiomyocyte maturation compared to 2D culture. Sci. Rep. 9, 9229 (2019).
pubmed: 31239450 pmcid: 6592905 doi: 10.1038/s41598-019-45047-9
Chen, F.-M. & Liu, X. Advancing biomaterials of human origin for tissue engineering. Prog. Polym. Sci. 53, 86–168 (2016).
pubmed: 27022202 doi: 10.1016/j.progpolymsci.2015.02.004
Kharaziha, M. et al. PGS:gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Biomaterials 34, 6355–6366 (2013).
pubmed: 23747008 pmcid: 3685203 doi: 10.1016/j.biomaterials.2013.04.045
Wu, Y., Wang, L., Guo, B. & Ma, P. X. Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy. ACS Nano 11, 5646–5659 (2017).
pubmed: 28590127 doi: 10.1021/acsnano.7b01062
Ashtari, K. et al. Electrically conductive nanomaterials for cardiac tissue engineering. Adv. Drug Deliv. Rev. 144, 162–179 (2019).
pubmed: 31176755 pmcid: 6784829 doi: 10.1016/j.addr.2019.06.001
Zhao, Y. et al. Engineering microenvironment for human cardiac tissue assembly in heart-on-a-chip platform. Matrix Biol. 85–86, 189–204 (2020).
pubmed: 30981898 doi: 10.1016/j.matbio.2019.04.001
Breckwoldt, K. et al. Differentiation of cardiomyocytes and generation of human engineered heart tissue. Nat. Protoc. 12, 1177–1197 (2017).
pubmed: 28492526 doi: 10.1038/nprot.2017.033
Ronaldson-Bouchard, K. et al. Engineering of human cardiac muscle electromechanically matured to an adult-like phenotype. Nat. Protoc. 14, 2781–2817 (2019).
pubmed: 31492957 pmcid: 7195192 doi: 10.1038/s41596-019-0189-8
Schwach, V. & Passier, R. Native cardiac environment and its impact on engineering cardiac tissue. Biomater. Sci. 7, 3566–3580 (2019).
pubmed: 31338495 doi: 10.1039/C8BM01348A
Fong, A. H. et al. Three-dimensional adult cardiac extracellular matrix promotes maturation of human induced pluripotent stem cell-derived cardiomyocytes. Tissue Eng. Part A 22, 1016–1025 (2016).
pubmed: 27392582 pmcid: 4991595 doi: 10.1089/ten.tea.2016.0027
Rai, R. et al. Biomimetic poly(glycerol sebacate) (PGS) membranes for cardiac patch application. Mater. Sci. Eng. C Mater. Biol. Appl. 33, 3677–3687 (2013).
pubmed: 23910264 doi: 10.1016/j.msec.2013.04.058
Park, H., Radisic, M., Lim, J. O., Chang, B. H. & Vunjak-Novakovic, G. A novel composite scaffold for cardiac tissue engineering. In Vitro Cell. Dev. Biol. Anim. 41, 188–196 (2005).
pubmed: 16223333 doi: 10.1290/0411071.1
Xu, G. et al. Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo(acryloyl carbonate)–poly(ethylene glycol)–oligo(acryloyl carbonate) copolymer for functional cardiac regeneration. Acta Biomater. 15, 55–64 (2015).
pubmed: 25545323 doi: 10.1016/j.actbio.2014.12.016
Ketabat, F., Karkhaneh, A., Mehdinavaz Aghdam, R. & Hossein Ahmadi Tafti, S. Injectable conductive collagen/alginate/polypyrrole hydrogels as a biocompatible system for biomedical applications. J. Biomater. Sci. Polym. Ed. 28, 794–805 (2017).
pubmed: 28278043 doi: 10.1080/09205063.2017.1302314
Roshanbinfar, K. et al. Electroconductive biohybrid hydrogel for enhanced maturation and beating properties of engineered cardiac tissues. Adv. Funct. Mater. 28, 1803951 (2018).
doi: 10.1002/adfm.201803951
Sengupta, D. & Heilshorn, S. C. Protein-engineered biomaterials: highly tunable tissue engineering scaffolds. Tissue Eng. Part B Rev. 16, 285–293 (2010).
pubmed: 20141386 doi: 10.1089/ten.teb.2009.0591
Farajollahi, M. M., Hamzehlou, S., Mehdipour, A. & Samadikuchaksaraei, A. Recombinant proteins: hopes for tissue engineering. BioImpacts 2, 123–125 (2012).
pubmed: 23678450 pmcid: 3648934
Esser, T. U., Trossmann, V. T., Lentz, S., Engel, F. B. & Scheibel, T. Designing of spider silk proteins for human induced pluripotent stem cell-based cardiac tissue engineering. Mater. Today Bio. 11, 100114 (2021).
pubmed: 34169268 pmcid: 8209670 doi: 10.1016/j.mtbio.2021.100114
Stoppel, W. L. et al. Elastic, silk-cardiac extracellular matrix hydrogels exhibit time-dependent stiffening that modulates cardiac fibroblast response. J. Biomed. Mater. Res. A 104, 3058–3072 (2016).
pubmed: 27480328 pmcid: 5805141 doi: 10.1002/jbm.a.35850
Hasturk, O., Jordan, K. E., Choi, J. & Kaplan, D. L. Enzymatically crosslinked silk and silk-gelatin hydrogels with tunable gelation kinetics, mechanical properties and bioactivity for cell culture and encapsulation. Biomaterials 232, 119720 (2020).
pubmed: 31896515 doi: 10.1016/j.biomaterials.2019.119720
Yildirim, Y. et al. Development of a biological ventricular assist device. Circulation 116, I-16–I-23 (2007).
doi: 10.1161/CIRCULATIONAHA.106.679688
Arai, K. et al. Fabrication of scaffold-free tubular cardiac constructs using a Bio-3D printer. PLoS ONE 13, e0209162 (2018).
pubmed: 30557409 pmcid: 6296519 doi: 10.1371/journal.pone.0209162
Tsuruyama, S., Matsuura, K., Sakaguchi, K. & Shimizu, T. Pulsatile tubular cardiac tissues fabricated by wrapping human iPS cells-derived cardiomyocyte sheets. Regen. Ther. 11, 297–305 (2019).
pubmed: 31667209 pmcid: 6813561 doi: 10.1016/j.reth.2019.09.001
Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482–487 (2019).
pubmed: 31371612 doi: 10.1126/science.aav9051
Noor, N. et al. 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv. Sci. 6, 1900344 (2019).
doi: 10.1002/advs.201900344
Ivey, M. J. & Tallquist, M. D. Defining the cardiac fibroblast: a new hope. Circ. J. 80, 2269–2276 (2016).
pubmed: 27746422 pmcid: 5588900 doi: 10.1253/circj.CJ-16-1003
Camelliti, P., Borg, T. K. & Kohl, P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc. Res. 65, 40–51 (2005).
pubmed: 15621032 doi: 10.1016/j.cardiores.2004.08.020
Talman, V. & Kivelä, R. Cardiomyocyte–endothelial cell interactions in cardiac remodeling and regeneration. Front. Cardiovasc. Med. 5, 101 (2018).
pubmed: 30175102 pmcid: 6108380 doi: 10.3389/fcvm.2018.00101
Colliva, A., Braga, L., Giacca, M. & Zacchigna, S. Endothelial cell–cardiomyocyte crosstalk in heart development and disease. J. Physiol. 598, 2923–2939 (2020).
pubmed: 30816576 doi: 10.1113/JP276758
Caspi, O. et al. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ. Res. 100, 263–272 (2007).
pubmed: 17218605 doi: 10.1161/01.RES.0000257776.05673.ff
Tulloch, N. L. et al. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ. Res. 109, 47–59 (2011).
pubmed: 21597009 pmcid: 3140796 doi: 10.1161/CIRCRESAHA.110.237206
Nunes, S. S. et al. Biowire: a platform for maturation of human pluripotent stem cell–derived cardiomyocytes. Nat. Methods 10, 781–787 (2013).
pubmed: 23793239 pmcid: 4071061 doi: 10.1038/nmeth.2524
Ronaldson-Bouchard, K. et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556, 239–243 (2018).
pubmed: 29618819 pmcid: 5895513 doi: 10.1038/s41586-018-0016-3
Giacomelli, E. et al. Human-iPSC-derived cardiac stromal cells enhance maturation in 3d cardiac microtissues and reveal non-cardiomyocyte contributions to heart disease. Cell Stem Cell 26, 862–879.e11 (2020).
pubmed: 32459996 pmcid: 7284308 doi: 10.1016/j.stem.2020.05.004
Masumoto, H. et al. The myocardial regenerative potential of three-dimensional engineered cardiac tissues composed of multiple human iPS cell-derived cardiovascular cell lineages. Sci. Rep. 6, 29933 (2016).
pubmed: 27435115 pmcid: 4951692 doi: 10.1038/srep29933
Campostrini, G. et al. Generation, functional analysis and applications of isogenic three-dimensional self-aggregating cardiac microtissues from human pluripotent stem cells. Nat. Protoc. 16, 2213–2256 (2021).
pubmed: 33772245 pmcid: 7611409 doi: 10.1038/s41596-021-00497-2
Kamakura, T. et al. Ultrastructural maturation of human-induced pluripotent stem cell-derived cardiomyocytes in a long-term culture. Circ. J. 77, 1307–1314 (2013).
pubmed: 23400258 doi: 10.1253/circj.CJ-12-0987
Lundy, S. D., Zhu, W.-Z., Regnier, M. & Laflamme, M. A. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem. Cells Dev. 22, 1991–2002 (2013).
pubmed: 23461462 pmcid: 3699903 doi: 10.1089/scd.2012.0490
Mihic, A. et al. The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cell-derived cardiomyocytes. Biomaterials 35, 2798–2808 (2014).
pubmed: 24424206 doi: 10.1016/j.biomaterials.2013.12.052
Shadrin, I. Y. et al. Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat. Commun. 8, 1825 (2017).
pubmed: 29184059 pmcid: 5705709 doi: 10.1038/s41467-017-01946-x
Leonard, A. et al. Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues. J. Mol. Cell. Cardiol. 118, 147–158 (2018).
pubmed: 29604261 pmcid: 5940558 doi: 10.1016/j.yjmcc.2018.03.016
Yang, X. et al. Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J. Mol. Cell. Cardiol. 72, 296–304 (2014).
pubmed: 24735830 pmcid: 4041732 doi: 10.1016/j.yjmcc.2014.04.005
Parikh, S. S. et al. Thyroid and glucocorticoid hormones promote functional T-tubule development in human-induced pluripotent stem cell-derived cardiomyocytes. Circ. Res. 121, 1323–1330 (2017).
pubmed: 28974554 pmcid: 5722667 doi: 10.1161/CIRCRESAHA.117.311920
Lin, B. et al. Culture in glucose-depleted medium supplemented with fatty acid and 3,3’,5-triiodo-l-thyronine facilitates purification and maturation of human pluripotent stem cell-derived cardiomyocytes. Front. Endocrinol. 8, 253 (2017).
doi: 10.3389/fendo.2017.00253
Yang, X. et al. Fatty acids enhance the maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cell Rep. 13, 657–668 (2019).
doi: 10.1016/j.stemcr.2019.08.013
Horikoshi, Y. et al. Fatty acid-treated induced pluripotent stem cell-derived human cardiomyocytes exhibit adult cardiomyocyte-like energy metabolism phenotypes. Cells 8, 1095 (2019).
pmcid: 6769886 doi: 10.3390/cells8091095
Correia, C. et al. Distinct carbon sources affect structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Sci. Rep. 7, 8590 (2017).
pubmed: 28819274 pmcid: 5561128 doi: 10.1038/s41598-017-08713-4
Feyen, D. A. M. et al. Metabolic maturation media improve physiological function of human iPSC-derived cardiomyocytes. Cell Rep. 32, 107925 (2020).
pubmed: 32697997 doi: 10.1016/j.celrep.2020.107925
Chong, J. J. H. et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510, 273–277 (2014).
pubmed: 24776797 pmcid: 4154594 doi: 10.1038/nature13233
Komae, H. et al. Three-dimensional functional human myocardial tissues fabricated from induced pluripotent stem cells. J. Tissue Eng. Regen. Med. 11, 926–935 (2017).
pubmed: 25628251 doi: 10.1002/term.1995
Seta, H., Matsuura, K., Sekine, H., Yamazaki, K. & Shimizu, T. Tubular cardiac tissues derived from human induced pluripotent stem cells generate pulse pressure in vivo. Sci. Rep. 7, 45499 (2017).
pubmed: 28358136 pmcid: 5371992 doi: 10.1038/srep45499
Goldsmith, E. C. et al. Organization of fibroblasts in the heart. Dev. Dyn. 230, 787–794 (2004).
pubmed: 15254913 doi: 10.1002/dvdy.20095
Rossi, G. et al. Capturing cardiogenesis in gastruloids. Cell Stem Cell 28, 230–240.e6 (2021).
pubmed: 33176168 doi: 10.1016/j.stem.2020.10.013
Drakhlis, L. et al. Human heart-forming organoids recapitulate early heart and foregut development. Nat. Biotechnol. 39, 737–746 (2021).
pubmed: 33558697 pmcid: 8192303 doi: 10.1038/s41587-021-00815-9
Hofbauer, P. et al. Cardioids reveal self-organizing principles of human cardiogenesis. Cell 184, 3299–3317.e22 (2021).
pubmed: 34019794 doi: 10.1016/j.cell.2021.04.034
Lee, B. W. et al. Modular assembly approach to engineer geometrically precise cardiovascular tissue. Adv. Healthc. Mater. 5, 900–906 (2016).
pubmed: 26865105 pmcid: 4836958 doi: 10.1002/adhm.201500956
Zhang, B. et al. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat. Mater. 15, 669–678 (2016).
pubmed: 26950595 pmcid: 4879054 doi: 10.1038/nmat4570
Lai, B. F. L. et al. InVADE: integrated vasculature for assessing dynamic events. Adv. Funct. Mater. 27, 1703524 (2017).
doi: 10.1002/adfm.201703524
Zhang, Y. S. et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110, 45–59 (2016).
pubmed: 27710832 pmcid: 5198581 doi: 10.1016/j.biomaterials.2016.09.003
Skylar-Scott, M. A. et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 5, eaaw2459 (2019).
pubmed: 31523707 pmcid: 6731072 doi: 10.1126/sciadv.aaw2459
Ruskowitz, E. R. & DeForest, C. A. Photoresponsive biomaterials for targeted drug delivery and 4D cell culture. Nat. Rev. Mater. 3, 17087 (2018).
doi: 10.1038/natrevmats.2017.87
Brown, T. E. & Anseth, K. S. Spatiotemporal hydrogel biomaterials for regenerative medicine. Chem. Soc. Rev. 46, 6532–6552 (2017).
pubmed: 28820527 pmcid: 5662487 doi: 10.1039/C7CS00445A
DeForest, C. A., Polizzotti, B. D. & Anseth, K. S. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat. Mater. 8, 659–664 (2009).
pubmed: 19543279 pmcid: 2715445 doi: 10.1038/nmat2473
Shadish, J. A., Benuska, G. M. & DeForest, C. A. Bioactive site-specifically modified proteins for 4D patterning of gel biomaterials. Nat. Mater. 18, 1005–1014 (2019).
pubmed: 31110347 pmcid: 6706293 doi: 10.1038/s41563-019-0367-7
Wang, G. et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat. Med. 20, 616–623 (2014).
pubmed: 24813252 pmcid: 4172922 doi: 10.1038/nm.3545
Hinson, J. T. et al. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science 349, 982–986 (2015).
pubmed: 26315439 pmcid: 4618316 doi: 10.1126/science.aaa5458
Mosqueira, D. et al. CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy. Eur. Heart J. 39, 3879–3892 (2018).
pubmed: 29741611 pmcid: 6234851 doi: 10.1093/eurheartj/ehy249
Mandegar, M. A. et al. CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell 18, 541–553 (2016).
pubmed: 26971820 pmcid: 4830697 doi: 10.1016/j.stem.2016.01.022
Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).
pubmed: 16116447 doi: 10.1038/nn1525
Dwenger, M. et al. Chronic optical pacing conditioning of h-iPSC engineered cardiac tissues. J. Tissue Eng. 10, 2041731419841748 (2019).
pubmed: 31024681 pmcid: 6472158 doi: 10.1177/2041731419841748
Dempsey, G. T. et al. Cardiotoxicity screening with simultaneous optogenetic pacing, voltage imaging and calcium imaging. J. Pharmacol. Toxicol. Methods 81, 240–250 (2016).
pubmed: 27184445 doi: 10.1016/j.vascn.2016.05.003
Klimas, A. et al. OptoDyCE as an automated system for high-throughput all-optical dynamic cardiac electrophysiology. Nat. Commun. 7, 11542 (2016).
pubmed: 27161419 pmcid: 4866323 doi: 10.1038/ncomms11542
Lemme, M. et al. Chronic intermittent tachypacing by an optogenetic approach induces arrhythmia vulnerability in human engineered heart tissue. Cardiovasc. Res. 116, 1487–1499 (2020).
pubmed: 31598634 doi: 10.1093/cvr/cvz245
Kwon, E. & Heo, W. D. Optogenetic tools for dissecting complex intracellular signaling pathways. Biochem. Biophys. Res. Commun. 527, 331–336 (2020).
pubmed: 31948753 doi: 10.1016/j.bbrc.2019.12.132
Park, H. et al. Optogenetic protein clustering through fluorescent protein tagging and extension of CRY2. Nat. Commun. 8, 30 (2017).
pubmed: 28646204 pmcid: 5482817 doi: 10.1038/s41467-017-00060-2
Kim, N. Y. et al. Optogenetic control of mRNA localization and translation in live cells. Nat. Cell Biol. 22, 341–352 (2020).
pubmed: 32066905 doi: 10.1038/s41556-020-0468-1
Ma, G. et al. Optogenetic engineering to probe the molecular choreography of STIM1-mediated cell signaling. Nat. Commun. 11, 1039 (2020).
pubmed: 32098964 pmcid: 7042325 doi: 10.1038/s41467-020-14841-9
Wearn, J. T., Technical Assistance of Zschiesche L. J. The extent of the capillary bed of the heart. J. Exp. Med. 47, 273–290 (1928).
pubmed: 19869413 pmcid: 2131359 doi: 10.1084/jem.47.2.273
Gordan, R., Gwathmey, J. K. & Xie, L.-H. Autonomic and endocrine control of cardiovascular function. World J. Cardiol. 7, 204–214 (2015).
pubmed: 25914789 pmcid: 4404375 doi: 10.4330/wjc.v7.i4.204
Oh, Y. et al. Functional coupling with cardiac muscle promotes maturation of hPSC-derived sympathetic neurons. Cell Stem Cell 19, 95–106 (2016).
pubmed: 27320040 pmcid: 4996639 doi: 10.1016/j.stem.2016.05.002
Winbo, A. et al. Functional coculture of sympathetic neurons and cardiomyocytes derived from human-induced pluripotent stem cells. Am. J. Physiol. Heart Circ. Physiol. 319, H927–H937 (2020).
pubmed: 32822546 doi: 10.1152/ajpheart.00546.2020
Takayama, Y. et al. Selective induction of human autonomic neurons enables precise control of cardiomyocyte beating. Sci. Rep. 10, 9464 (2020).
pubmed: 32528170 pmcid: 7289887 doi: 10.1038/s41598-020-66303-3
Dollinger, C. et al. Incorporation of resident macrophages in engineered tissues: multiple cell type response to microenvironment controlled macrophage-laden gelatine hydrogels. J. Tissue Eng. Regen. Med. 12, 330–340 (2018).
pubmed: 28482136 doi: 10.1002/term.2458
Lyadova, I., Gerasimova, T. & Nenasheva, T. Macrophages derived from human induced pluripotent stem cells: the diversity of protocols, future prospects, and outstanding questions. Front. Cell Dev. Biol. 9, 924 (2021).
doi: 10.3389/fcell.2021.640703
Mills, R. J. et al. Drug screening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway. Cell Stem Cell 24, 895–907.e6 (2019).
pubmed: 30930147 doi: 10.1016/j.stem.2019.03.009
Richards, D. J. et al. Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity. Nat. Biomed. Eng. 4, 446–462 (2020).
pubmed: 32284552 pmcid: 7422941 doi: 10.1038/s41551-020-0539-4
Rhee, J.-W. et al. Modeling secondary iron overload cardiomyopathy with human induced pluripotent stem cell-derived cardiomyocytes. Cell Rep. 32, 107886 (2020).
pubmed: 32668256 pmcid: 7553857 doi: 10.1016/j.celrep.2020.107886
Zhang, B. et al. Microfabrication of AngioChip, a biodegradable polymer scaffold with microfluidic vasculature. Nat. Protoc. 13, 1793–1813 (2018).
pubmed: 30072724 doi: 10.1038/s41596-018-0015-8
Help Therapeutics. Epicardial Injection of Allogeneic Human Pluripotent Stem Cell-derived Cardiomyocytes to Treat Severe Chronic Heart Failure https://clinicaltrials.gov/ct2/show/NCT03763136 (2021).
Gavenis, K. Safety and Efficacy of Induced Pluripotent Stem Cell-derived Engineered Human Myocardium as Biological Ventricular Assist Tissue in Terminal Heart Failure https://clinicaltrials.gov/ct2/show/NCT04396899 (2021).
Huebsch, N. et al. Automated video-based analysis of contractility and calcium flux in human-induced pluripotent stem cell-derived cardiomyocytes cultured over different spatial scales. Tissue Eng. Part C Methods 21, 467–479 (2015).
pubmed: 25333967 pmcid: 4410286 doi: 10.1089/ten.tec.2014.0283
Sharma, A., Toepfer, C. N., Schmid, M., Garfinkel, A. C. & Seidman, C. E. Differentiation and contractile analysis of GFP-sarcomere reporter hiPSC-cardiomyocytes. Curr. Protoc. Hum. Genet. 96, 21.12.1–21.12.12 (2018).
Toepfer, C. N. et al. SarcTrack. Circ. Res. 124, 1172–1183 (2019).
pubmed: 30700234 pmcid: 6485312 doi: 10.1161/CIRCRESAHA.118.314505
Psaras, Y. et al. CalTrack: high-throughput automated calcium transient analysis in cardiomyocytes. Circ. Res. 129, 326–341 (2021).
pubmed: 34018815 pmcid: 8260473 doi: 10.1161/CIRCRESAHA.121.318868
Bock, C., Farlik, M. & Sheffield, N. C. Multi-omics of single cells: strategies and applications. Trends Biotechnol. 34, 605–608 (2016).
pubmed: 27212022 pmcid: 4959511 doi: 10.1016/j.tibtech.2016.04.004
Manzoni, C. et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief. Bioinform. 19, 286–302 (2018).
pubmed: 27881428 doi: 10.1093/bib/bbw114
Bai, D., Peng, J. & Yi, C. Advances in single-cell multi-omics profiling. RSC Chem. Biol. 2, 441–449 (2021).
pubmed: 34458793 pmcid: 8341011 doi: 10.1039/D0CB00163E
Asp, M. et al. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell 179, 1647–1660.e19 (2019).
pubmed: 31835037 doi: 10.1016/j.cell.2019.11.025
Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).
pubmed: 32971526 pmcid: 7681775 doi: 10.1038/s41586-020-2797-4
Yechikov, S. et al. NODAL inhibition promotes differentiation of pacemaker-like cardiomyocytes from human induced pluripotent stem cells. Stem Cell Res. 49, 102043 (2020).
pubmed: 33128951 pmcid: 7814970 doi: 10.1016/j.scr.2020.102043
Devalla, H. D. et al. Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology. EMBO Mol. Med. 7, 394–410 (2015).
pubmed: 25700171 pmcid: 4403042 doi: 10.15252/emmm.201404757
Guadix, J. A. et al. Human pluripotent stem cell differentiation into functional epicardial progenitor cells. Stem Cell Rep. 9, 1754–1764 (2017).
doi: 10.1016/j.stemcr.2017.10.023
Yao, S. et al. Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc. Natl Acad. Sci. USA 103, 6907–6912 (2006).
pubmed: 16632596 pmcid: 1458992 doi: 10.1073/pnas.0602280103
Takei, S. et al. Bone morphogenetic protein-4 promotes induction of cardiomyocytes from human embryonic stem cells in serum-based embryoid body development. Am. J. Physiol. Heart Circ. Physiol. 296, H1793–H1803 (2009).
pubmed: 19363129 doi: 10.1152/ajpheart.01288.2008
Li, J. et al. Human pluripotent stem cell-derived cardiac tissue-like constructs for repairing the infarcted myocardium. Stem Cell Rep. 9, 1546–1559 (2017).
doi: 10.1016/j.stemcr.2017.09.007
Han, J., Wu, Q., Xia, Y., Wagner, M. B. & Xu, C. Cell alignment induced by anisotropic electrospun fibrous scaffolds alone has limited effect on cardiomyocyte maturation. Stem Cell Res. 16, 740–750 (2016).
pubmed: 27131761 pmcid: 4903921 doi: 10.1016/j.scr.2016.04.014
Kaiser, N. J., Kant, R. J., Minor, A. J. & Coulombe, K. L. K. Optimizing blended collagen-fibrin hydrogels for cardiac tissue engineering with human iPSC-derived cardiomyocytes. ACS Biomater. Sci. Eng. 5, 887–899 (2019).
pubmed: 30775432 doi: 10.1021/acsbiomaterials.8b01112
Rogers, A. J., Fast, V. G. & Sethu, P. Biomimetic cardiac tissue model enables the adaption of human induced pluripotent stem cell cardiomyocytes to physiological hemodynamic loads. Anal. Chem. 88, 9862–9868 (2016).
pubmed: 27620367 pmcid: 6050012 doi: 10.1021/acs.analchem.6b03105
Ruan, J.-L. et al. Mechanical stress promotes maturation of human myocardium from pluripotent stem cell-derived progenitors. Stem Cells 33, 2148–2157 (2015).
pubmed: 25865043 pmcid: 4478130 doi: 10.1002/stem.2036
Ulmer, B. M. et al. Contractile work contributes to maturation of energy metabolism in hiPSC-derived cardiomyocytes. Stem Cell Rep. 10, 834–847 (2018).
doi: 10.1016/j.stemcr.2018.01.039
Ruan, J.-L. et al. Mechanical stress conditioning and electrical stimulation promote contractility and force maturation of induced pluripotent stem cell-derived human cardiac tissue. Circulation 134, 1557–1567 (2016).
pubmed: 27737958 pmcid: 5123912 doi: 10.1161/CIRCULATIONAHA.114.014998
Marchianò, S., Bertero, A. & Murry, C. E. Learn from your elders: developmental biology lessons to guide maturation of stem cell-derived cardiomyocytes. Pediatr. Cardiol. 40, 1367–1387 (2019).
pubmed: 31388700 pmcid: 6786957 doi: 10.1007/s00246-019-02165-5
Wiegerinck, R. F. et al. Force frequency relationship of the human ventricle increases during early postnatal development. Pediatr. Res. 65, 414–419 (2009).
pubmed: 19127223 pmcid: 2788428 doi: 10.1203/PDR.0b013e318199093c
Yang, X., Pabon, L. & Murry, C. E. Engineering adolescence. Circ. Res. 114, 511–523 (2014).
pubmed: 24481842 pmcid: 3955370 doi: 10.1161/CIRCRESAHA.114.300558
Feric, N. T. & Radisic, M. Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv. Drug Deliv. Rev. 96, 110–134 (2016).
pubmed: 25956564 doi: 10.1016/j.addr.2015.04.019
Lopaschuk, G. D. & Jaswal, J. S. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal. J. Cardiovasc. Pharmacol. 56, 130–140 (2010).
pubmed: 20505524 doi: 10.1097/FJC.0b013e3181e74a14

Auteurs

Richard Z Zhuang (RZ)

Department of Biomedical Engineering, Columbia University, New York, NY, USA.

Roberta Lock (R)

Department of Biomedical Engineering, Columbia University, New York, NY, USA.

Bohao Liu (B)

Department of Medicine, Columbia University, New York, NY, USA.

Gordana Vunjak-Novakovic (G)

Department of Biomedical Engineering, Columbia University, New York, NY, USA. gv2131@columbia.edu.
Department of Medicine, Columbia University, New York, NY, USA. gv2131@columbia.edu.
College of Dental Medicine, Columbia University, New York, NY, USA. gv2131@columbia.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH