First-principles studies of substituent effects on squaraine dyes.
Journal
RSC advances
ISSN: 2046-2069
Titre abrégé: RSC Adv
Pays: England
ID NLM: 101581657
Informations de publication
Date de publication:
24 May 2021
24 May 2021
Historique:
received:
20
02
2021
accepted:
17
05
2021
entrez:
28
4
2022
pubmed:
29
4
2022
medline:
29
4
2022
Statut:
epublish
Résumé
Dye molecules that absorb light in the visible region are key components in many applications, including organic photovoltaics, biological fluorescent labeling, super-resolution microscopy, and energy transport. One family of dyes, known as squaraines, has received considerable attention recently due to their favorable electronic and photophysical properties. In addition, these dyes have a strong propensity for aggregation, which results in emergent materials properties, such as exciton delocalization. This will be of benefit in charge separation and energy transport along with fundamental studies in quantum information. Given the high structural tunability of squaraine dyes, it is possible that exciton delocalization could be tailored by modifying the substituents attached to the π-conjugated network. To date, limited theoretical studies have explored the role of substituent effects on the electronic and photophysical properties of squaraines in the context of DNA-templated dye aggregates and resultant excitonic behavior. We used
Identifiants
pubmed: 35478639
doi: 10.1039/d1ra01377g
pii: d1ra01377g
pmc: PMC9033489
doi:
Types de publication
Journal Article
Langues
eng
Pagination
19029-19040Informations de copyright
This journal is © The Royal Society of Chemistry.
Déclaration de conflit d'intérêts
There are no conflicts to declare.
Références
Org Biomol Chem. 2012 Dec 7;10(45):8944-7
pubmed: 23076304
ACS Appl Mater Interfaces. 2018 Apr 4;10(13):11063-11069
pubmed: 29527890
Chem Cent J. 2012 Jul 18;6(1):70
pubmed: 22809100
J Phys Chem B. 2020 Oct 29;124(43):9636-9647
pubmed: 33052691
Phys Chem Chem Phys. 2014 Jul 21;16(27):14244-56
pubmed: 24914488
Bioconjug Chem. 2020 Feb 19;31(2):194-213
pubmed: 31365819
J Chem Theory Comput. 2013 Jun 11;9(6):2749-60
pubmed: 26583866
Angew Chem Int Ed Engl. 2010 Jul 26;49(32):5502-6
pubmed: 20602380
J Phys Chem A. 2018 Mar 1;122(8):2086-2095
pubmed: 29420037
J Phys Chem B. 2006 Aug 31;110(34):17268-81
pubmed: 16928026
Chem Soc Rev. 2017 Feb 20;46(4):1052-1079
pubmed: 28128377
Chem Phys. 2008 Aug 22;357(1-3):79-84
pubmed: 20617102
Molecules. 2012 Apr 20;17(4):4661-71
pubmed: 22522396
Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11176-81
pubmed: 18676615
Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8525-30
pubmed: 18562293
J Phys Chem Lett. 2020 May 21;11(10):4163-4172
pubmed: 32391695
Chem Commun (Camb). 2013 Jun 11;49(46):5298-300
pubmed: 23636273
Chemphyschem. 2018 May 7;19(9):1016-1023
pubmed: 29266605
Chem Commun (Camb). 2012 Oct 7;48(77):9589-91
pubmed: 22908095
J Phys Chem A. 2011 Sep 1;115(34):9612-9
pubmed: 21500787
J Phys Chem A. 2016 Dec 22;120(50):9941-9947
pubmed: 27934475
Front Chem. 2018 Jun 04;6:200
pubmed: 29915784
Angew Chem Int Ed Engl. 2011 Apr 4;50(15):3376-410
pubmed: 21442690
Langmuir. 2009 Feb 3;25(3):1667-74
pubmed: 19118476
Phys Chem Chem Phys. 2014 Feb 14;16(6):2390-8
pubmed: 24352799
J Chem Phys. 2018 Feb 28;148(8):085101
pubmed: 29495791
J Am Chem Soc. 2003 Feb 26;125(8):2217-23
pubmed: 12590550
Org Biomol Chem. 2015 Oct 21;13(39):9993-10006
pubmed: 26289381
Chemistry. 2006 Jan 11;12(3):777-84
pubmed: 16163760
J Chem Phys. 2013 Jul 21;139(3):034313
pubmed: 23883033
Angew Chem Int Ed Engl. 2004 Dec 3;43(47):6522-5
pubmed: 15578779
Commun Chem. 2021;4:
pubmed: 35474961
ACS Nano. 2012 Jan 24;6(1):972-8
pubmed: 22196154
Chemistry. 2018 Sep 6;24(50):13205-13212
pubmed: 29878461
J Phys Chem B. 2018 May 17;122(19):5020-5029
pubmed: 29698610
Q Rev Biophys. 2011 Feb;44(1):123-51
pubmed: 21108866
Angew Chem Int Ed Engl. 2012 Jan 2;51(1):164-7
pubmed: 22105993
J Phys Chem B. 2009 Apr 30;113(17):6097-108
pubmed: 19351124
Nat Commun. 2017 Apr 13;8:14987
pubmed: 28406153
Angew Chem Int Ed Engl. 2012 Jan 23;51(4):916-9
pubmed: 22162263
Chem Rev. 2018 Aug 8;118(15):7069-7163
pubmed: 29664617
J Phys Chem Lett. 2017 Dec 7;8(23):5827-5833
pubmed: 29144136
Chem Asian J. 2008 Jun 2;3(6):958-68
pubmed: 18446920
Acc Chem Res. 2015 Mar 17;48(3):530-7
pubmed: 25710687
Chem Soc Rev. 2013 Feb 7;42(3):845-56
pubmed: 23117144
Molecules. 2021 Jan 20;26(3):
pubmed: 33498306
J Phys Chem B. 2020 Sep 17;124(37):8042-8049
pubmed: 32706583
J Cheminform. 2012 Aug 13;4(1):17
pubmed: 22889332
J Phys Chem A. 2017 Feb 16;121(6):1213-1222
pubmed: 28103041
Phys Chem Chem Phys. 2011 Oct 14;13(38):16987-98
pubmed: 21881657
J Phys Chem B. 2014 Dec 18;118(50):14555-65
pubmed: 25397906
J Phys Chem A. 2018 Nov 21;122(46):8989-8997
pubmed: 30380862
Chem Sci. 2018 Sep 18;9(45):8598-8607
pubmed: 30568785
J Chem Theory Comput. 2016 Aug 9;12(8):3993-4003
pubmed: 27385324
J Phys Chem B. 2009 May 7;113(18):6378-96
pubmed: 19366259
Langmuir. 2011 Feb 15;27(4):1472-9
pubmed: 21174432
Chemistry. 2008;14(32):10101-14
pubmed: 18785676
Nature. 2001 May 31;411(6837):565-8
pubmed: 11385566
J Phys Chem A. 2010 Nov 11;114(44):11879-89
pubmed: 20954735
J Chem Theory Comput. 2015 Nov 10;11(11):5340-59
pubmed: 26574326
J Phys Chem A. 2017 Sep 21;121(37):6905-6916
pubmed: 28813152
J Phys Chem Lett. 2019 May 16;10(10):2386-2392
pubmed: 31010285
J Phys Chem B. 2014 Jun 12;118(23):6098-106
pubmed: 24837360
Basic Life Sci. 1991;58:231-51; discussion 251-5
pubmed: 1667351
J Chem Theory Comput. 2012 Jul 10;8(7):2359-72
pubmed: 26588969
J Am Chem Soc. 2014 Aug 13;136(32):11198-211
pubmed: 25029570
Org Lett. 2012 Mar 2;14(5):1246-9
pubmed: 22320397
Biophys Chem. 2015 Mar;198:36-44
pubmed: 25645886
Radiat Res. 1963 Sep;20:55-70
pubmed: 14061481
Chemistry. 2009 Oct 5;15(39):10092-102
pubmed: 19722239