A conductive polymer composed of a cellulose-based flexible film and carbon nanotubes.
Journal
RSC advances
ISSN: 2046-2069
Titre abrégé: RSC Adv
Pays: England
ID NLM: 101581657
Informations de publication
Date de publication:
03 Jun 2021
03 Jun 2021
Historique:
received:
04
05
2021
accepted:
31
05
2021
entrez:
28
4
2022
pubmed:
29
4
2022
medline:
29
4
2022
Statut:
epublish
Résumé
As a natural biological material, wood has renewability, biocompatibility, biodegradability and excellent mechanical properties. This research shows a conductive polymer composed of a cellulose-based flexible film constructed from natural wood and carbon nanotubes. Part of the lignin/hemicellulose of the natural wood was removed by the deep eutectic solvent to obtain a cellulose-based flexible film with a porous structure, and then the carbon nanotubes were infiltrated into the cellulose-based flexible film by vacuum pressure impregnation treatment to obtain the final conductive polymer. This conductive polymer has high conductivity and good toughness, and shows good perception ability under a certain range of strain/stress or human activity conditions. In addition, conductive fibers can be prepared by cutting and twisting the oriented cellulose nanofibers of this conductive polymer. The above-mentioned properties of this conductive polymer provide great potential for its development in electrical-related fields.
Identifiants
pubmed: 35479890
doi: 10.1039/d1ra03474j
pii: d1ra03474j
pmc: PMC9033658
doi:
Types de publication
Journal Article
Langues
eng
Pagination
20081-20088Informations de copyright
This journal is © The Royal Society of Chemistry.
Déclaration de conflit d'intérêts
The authors declare no competing financial interest.
Références
Adv Sci (Weinh). 2017 Jul 06;4(9):1700191
pubmed: 28932678
ACS Appl Mater Interfaces. 2014 Jun 25;6(12):9760-7
pubmed: 24873330
ACS Nano. 2020 Mar 24;14(3):3528-3538
pubmed: 32109046
ACS Appl Mater Interfaces. 2018 Apr 18;10(15):12816-12823
pubmed: 29582991
Nat Commun. 2014 Jun 02;5:4018
pubmed: 24887005
Trends Biotechnol. 2017 Sep;35(9):836-846
pubmed: 28063621
ACS Omega. 2020 Jan 22;5(4):1782-1788
pubmed: 32039313
ACS Appl Mater Interfaces. 2012 Feb;4(2):1043-9
pubmed: 22257144
ACS Appl Mater Interfaces. 2016 Feb 10;8(5):3349-58
pubmed: 26784289
ACS Omega. 2020 Aug 24;5(35):22163-22170
pubmed: 32923774
Adv Mater. 2021 Jul;33(28):e2000619
pubmed: 32310313
ACS Appl Mater Interfaces. 2016 Jan 20;8(2):1073-9
pubmed: 26727586
Carbohydr Polym. 2019 Jun 15;214:213-220
pubmed: 30925991
Science. 2018 Nov 2;362(6414):547-553
pubmed: 30385571
Adv Mater. 2015 Mar 25;27(12):2070-6
pubmed: 25665182
Adv Mater. 2016 Jan 27;28(4):722-8
pubmed: 26618615
ACS Appl Mater Interfaces. 2020 Apr 1;12(13):15362-15369
pubmed: 32159323
ACS Appl Mater Interfaces. 2020 Feb 12;12(6):7631-7638
pubmed: 31961643
Adv Mater. 2021 Feb;33(8):e2001588
pubmed: 33470483
Adv Mater. 2020 Mar;32(10):e1907495
pubmed: 31984556
Nanoscale. 2020 Jan 28;12(4):2228-2267
pubmed: 31930259
ACS Appl Mater Interfaces. 2018 Sep 19;10(37):31655-31663
pubmed: 30141328
ACS Nano. 2018 Jul 24;12(7):6378-6388
pubmed: 29741364
Chem Commun (Camb). 2020 Sep 17;56(74):10809-10823
pubmed: 32812988
Carbohydr Polym. 2018 Dec 1;201:446-453
pubmed: 30241840
Adv Mater. 2021 Jul;33(28):e2001118
pubmed: 32573855
Signal Transduct Target Ther. 2021 May 5;6(1):175
pubmed: 33953157
Small. 2017 Nov;13(42):
pubmed: 28902985