An ecologically friendly process for graphene exfoliation based on the "hydrodynamic cavitation on a chip" concept.
Journal
RSC advances
ISSN: 2046-2069
Titre abrégé: RSC Adv
Pays: England
ID NLM: 101581657
Informations de publication
Date de publication:
13 May 2021
13 May 2021
Historique:
received:
29
04
2021
accepted:
11
05
2021
entrez:
28
4
2022
pubmed:
29
4
2022
medline:
29
4
2022
Statut:
epublish
Résumé
Tremendous research efforts have recently focused on the synthesis of graphene from graphitic materials, while environmental issues, scalability, and cost are some of the major challenges to be surmounted. Liquid phase exfoliation (LPE) of graphene is one of the principal methods for this synthesis. Nevertheless, sufficient information about the mechanisms of exfoliation has yet to emerge. Here, a microreactor based on the hydrodynamic cavitation (HC) on a chip concept is introduced to exfoliate graphite in a totally green process which involves only natural graphite flakes and water. HC-treated graphitic materials were characterized by UV-Vis and Raman spectroscopy, DLS (Dynamic Light Scattering), AFM (Atomic Force Microscopy), and SEM (Scanning Electron Microscopy) analyses. The present sustainable reactor system was found to exfoliate thick and large graphite particles to nano-sized sheets (∼1.2 nm) with a lateral size of ∼500 nm to 5 μm.
Identifiants
pubmed: 35480190
doi: 10.1039/d1ra03352b
pii: d1ra03352b
pmc: PMC9033250
doi:
Types de publication
Journal Article
Langues
eng
Pagination
17965-17975Informations de copyright
This journal is © The Royal Society of Chemistry.
Déclaration de conflit d'intérêts
The authors declare that they have no conflict of interest.
Références
Nat Commun. 2019 Apr 23;10(1):1912
pubmed: 31015405
Nat Nanotechnol. 2013 Apr;8(4):235-46
pubmed: 23552117
Nat Commun. 2017 Jun 15;8:15763
pubmed: 28643788
Nat Nanotechnol. 2008 Sep;3(9):563-8
pubmed: 18772919
Chem Commun (Camb). 2014 Mar 14;50(21):2751-4
pubmed: 24479130
Chem Soc Rev. 2018 Mar 5;47(5):1822-1873
pubmed: 29368764
Adv Drug Deliv Rev. 2016 Oct 1;105(Pt B):145-162
pubmed: 27569910
ACS Appl Mater Interfaces. 2015 Dec 16;7(49):27027-30
pubmed: 26600372
Acta Biomater. 2013 Dec;9(12):9243-57
pubmed: 23958782
Chemistry. 2012 Oct 29;18(44):14047-54
pubmed: 23015465
Nat Mater. 2014 Jun;13(6):624-30
pubmed: 24747780
Nanotechnology. 2011 Sep 7;22(36):365306
pubmed: 21844642
ACS Nano. 2017 Mar 28;11(3):2742-2755
pubmed: 28102670
Phys Chem Chem Phys. 2015 Nov 21;17(43):28484-504
pubmed: 26465215
RSC Adv. 2019 Jan 24;9(6):3232-3238
pubmed: 35518973
Nat Nanotechnol. 2011 Jun 26;6(7):439-45
pubmed: 21706026
Ultrason Sonochem. 2017 Sep;38:693-703
pubmed: 27622703
Small. 2010 Apr 9;6(7):864-71
pubmed: 20209652
Sci Rep. 2017 Sep 28;7(1):12371
pubmed: 28959046
Micromachines (Basel). 2019 Mar 15;10(3):
pubmed: 30875944
Chem Asian J. 2012 Dec;7(12):2925-30
pubmed: 23002020
Chem Commun (Camb). 2017 Jul 25;53(60):8463-8466
pubmed: 28702538
J Control Release. 2014 Jan 10;173:75-88
pubmed: 24161530
Nano Lett. 2012 Aug 8;12(8):3925-30
pubmed: 22764888
Nanoscale. 2014 Feb 21;6(4):1922-45
pubmed: 24301688
Nanomaterials (Basel). 2017 May 27;7(6):
pubmed: 28555015
Nat Chem. 2011 Apr;3(4):279-86
pubmed: 21430685
J Nanosci Nanotechnol. 2019 Apr 1;19(4):2078-2086
pubmed: 30486950
Nanomaterials (Basel). 2018 Nov 15;8(11):
pubmed: 30445778
Science. 2019 Mar 8;363(6431):1059-1064
pubmed: 30679385
Chem Soc Rev. 2012 Jun 21;41(12):4409-29
pubmed: 22513653
Micromachines (Basel). 2019 Dec 30;11(1):
pubmed: 31906037
J Am Chem Soc. 2009 Mar 18;131(10):3611-20
pubmed: 19227978
Beilstein J Nanotechnol. 2014 Dec 04;5:2328-38
pubmed: 25551061