Impact of Noise and Background on Measurement Uncertainties in Luminescence Thermometry.
Journal
ACS photonics
ISSN: 2330-4022
Titre abrégé: ACS Photonics
Pays: United States
ID NLM: 101634366
Informations de publication
Date de publication:
20 Apr 2022
20 Apr 2022
Historique:
received:
06
01
2022
entrez:
28
4
2022
pubmed:
29
4
2022
medline:
29
4
2022
Statut:
ppublish
Résumé
Materials with temperature-dependent luminescence can be used as local thermometers when incorporated in, for example, a biological environment or chemical reactor. Researchers have continuously developed new materials aiming for the highest sensitivity of luminescence to temperature. Although the comparison of luminescent materials based on their temperature sensitivity is convenient, this parameter gives an incomplete description of the potential performance of the materials in applications. Here, we demonstrate how the precision of a temperature measurement with luminescent nanocrystals depends not only on the temperature sensitivity of the nanocrystals but also on their luminescence strength compared to measurement noise and background signal. After first determining the noise characteristics of our instrumentation, we show how the uncertainty of a temperature measurement can be predicted quantitatively. Our predictions match the temperature uncertainties that we extract from repeated measurements, over a wide temperature range (303-473 K), for different CCD readout settings, and for different background levels. The work presented here is the first study that incorporates all of these practical issues to accurately calculate the uncertainty of luminescent nanothermometers. This method will be important for the optimization and development of luminescent nanothermometers.
Identifiants
pubmed: 35480490
doi: 10.1021/acsphotonics.2c00039
pmc: PMC9026254
doi:
Types de publication
Journal Article
Langues
eng
Pagination
1366-1374Informations de copyright
© 2022 The Authors. Published by American Chemical Society.
Déclaration de conflit d'intérêts
The authors declare no competing financial interest.
Références
ACS Nano. 2020 Apr 28;14(4):3725-3735
pubmed: 32307982
ACS Appl Nano Mater. 2021 Apr 23;4(4):4208-4215
pubmed: 34085030
Angew Chem Int Ed Engl. 2018 Jul 9;57(28):8765-8769
pubmed: 29732658
Nanoscale. 2019 Jul 7;11(25):12188-12197
pubmed: 31199421
Nat Commun. 2018 Jul 12;9(1):2698
pubmed: 30002372
Nat Commun. 2018 Nov 21;9(1):4907
pubmed: 30464256
ACS Nano. 2010 Jun 22;4(6):3254-8
pubmed: 20441184
ACS Nano. 2016 Feb 23;10(2):2071-81
pubmed: 26786064
Small. 2008 Jul;4(7):908-14
pubmed: 18504716
J Phys Chem C Nanomater Interfaces. 2017 Feb 16;121(6):3503-3510
pubmed: 28303168
Nanoscale. 2020 Oct 22;12(40):20776-20785
pubmed: 33030482
Inorg Chem. 2015 Dec 7;54(23):11323-9
pubmed: 26599972
PLoS One. 2013;8(1):e53671
pubmed: 23382848
Nano Lett. 2017 Aug 9;17(8):4746-4752
pubmed: 28686837
ACS Nano. 2018 Aug 28;12(8):8350-8361
pubmed: 30085648
Nat Commun. 2018 Jun 5;9(1):2176
pubmed: 29872036
ACS Appl Mater Interfaces. 2020 Sep 30;12(39):43933-43941
pubmed: 32869638
ACS Nano. 2020 Apr 28;14(4):4122-4133
pubmed: 32227917
ACS Photonics. 2021 Jun 16;8(6):1784-1793
pubmed: 34164566
ACS Nano. 2015 Feb 24;9(2):1801-8
pubmed: 25584627
Phys Chem Chem Phys. 2018 Jun 13;20(23):15876-15883
pubmed: 29845990
ACS Nano. 2018 May 22;12(5):4812-4823
pubmed: 29648802