Multiscale modelling for investigating the long-term time-dependent biphasic behaviour of the articular cartilage in the natural hip joint.
Biphasic articular cartilage
Finite element model
Multiscale modelling
Musculoskeletal model
Natural hip joint
Journal
Biomechanics and modeling in mechanobiology
ISSN: 1617-7940
Titre abrégé: Biomech Model Mechanobiol
Pays: Germany
ID NLM: 101135325
Informations de publication
Date de publication:
Aug 2022
Aug 2022
Historique:
received:
10
09
2021
accepted:
25
03
2022
pubmed:
29
4
2022
medline:
19
7
2022
entrez:
28
4
2022
Statut:
ppublish
Résumé
A better understanding of the time-dependent biomechanical behaviour of the biphasic hip articular cartilage (AC) under physiological loadings is important to understand the onset of joint pathology and guide the clinical treatment. Current computational studies for the biphasic hip AC were usually limited to short-term duration or using elaborate loading. The present study aimed to develop a multiscale computational modelling to investigate the long-term biphasic behaviour of the hip AC under physiological loadings over multiple gait cycles. Two-scale computational modelling including a musculoskeletal model and a finite element model of the natural hip was created. These two models were then combined and used to investigate the biphasic behaviour of hip AC over 80 gait cycles. The results showed that the interstitial fluid pressure in the AC supported over 89% of the loading during gait. When the contact area was located at the AC centre, the contact pressure and fluid pressure increased over time from the first cycle to the 80th cycle, while when the contact area approached the edge, these pressures decreased first dramatically and then slowly over time. The peak stresses and strains in the solid matrix of the AC remained at a low level and increased over time from the first cycle to the 80th cycle. This study demonstrated that the long-term temporal variations of the biphasic behaviour of hip AC under physiological loadings are significant. The methodology has potentially important implications in the biomechanical studies of human cartilage and supporting the development of cartilage substitution.
Identifiants
pubmed: 35482145
doi: 10.1007/s10237-022-01581-6
pii: 10.1007/s10237-022-01581-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1145-1155Subventions
Organisme : H2020 Marie Skłodowska-Curie Actions
ID : 745426
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Anderson AE, Ellis BJ, Maas SA, Peters CL, Weiss JA (2008) Validation of finite element predictions of cartilage contact pressure in the human hip joint. J Biomech Eng 130:051008
doi: 10.1115/1.2953472
Anderson AE, Ellis BJ, Maas SA, Weiss JA (2010) Effects of idealized joint geometry on finite element predictions of cartilage contact stresses in the hip. J Biomech 43:1351–1357
doi: 10.1016/j.jbiomech.2010.01.010
Andersen MS, Damsgaard M, MacWilliams B, Rasmussen J (2010) A computationally efficient optimisation-based method for parameter identification of kinematically determinate and over-determinate biomechanical systems. Comput Methods Biomech Biomed Engin 13:171–183
doi: 10.1080/10255840903067080
Ateshian GA (2009) The role of interstitial fluid pressurization in articular cartilage lubrication. J Biomech 42:1163–1176
doi: 10.1016/j.jbiomech.2009.04.040
Bader DL, Salter DM, Chowdhury TT (2011) Biomechanical influence of cartilage homeostasis in health and disease. Arthritis 2011:979032
doi: 10.1155/2011/979032
Bergmann G, Bender A, Dymke J, Duda G, Damm P (2016) Standardized loads acting in hip implants. PLoS ONE 11:e0155612
doi: 10.1371/journal.pone.0155612
Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34:859–871
doi: 10.1016/S0021-9290(01)00040-9
Byers PD, Contepomi CA, Farkas TA (1970) A post mortem study of the hip joint. Including the prevalence of the features of the right side. Ann Rheum Dis 29:15–31
doi: 10.1136/ard.29.1.15
Caligaris M, Ateshian GA (2008) Effects of sustained interstitial fluid pressurization under migrating contact area, and boundary lubrication by synovial fluid, on cartilage friction. Osteoarthr Cartil 16:1220–1227
doi: 10.1016/j.joca.2008.02.020
Carbone V, Fluit R, Pellikaan P, van der Krogt MM, Janssen D, Damsgaard M, Vigneron L, Feilkas T, Koopman HFJM, Verdonschot N (2015) TLEM 2.0-A comprehensive musculoskeletal geometry dataset for subject-specific modeling of lower extremity. J Biomech 48:734–741
doi: 10.1016/j.jbiomech.2014.12.034
Damsgaard M, Rasmussen J, Christensen ST, Surma E, de Zee M (2006) Analysis of musculoskeletal systems in the AnyBody modeling system. Simul Model Pract Theory 14:1100–1111
doi: 10.1016/j.simpat.2006.09.001
Ehlers W, Karajan N, Markert B (2009) An extended biphasic model for charged hydrated tissues with application to the intervertebral disc. Biomech Model Mechanobiol 8(3):233–251
doi: 10.1007/s10237-008-0129-y
Felson DT (2013) Osteoarthritis as a disease of mechanics. Osteoarthr Cartil 21:10–15
doi: 10.1016/j.joca.2012.09.012
Fischer MCM, Eschweiler J, Schick F, Asseln M, Damm P, Radermacher K (2018) Patient-specific musculoskeletal modeling of the hip joint for preoperative planning of total hip arthroplasty: a validation study based on in vivo measurements. PLoS ONE 13:e0195376
doi: 10.1371/journal.pone.0195376
Guilak F (2011) Biomechanical factors in osteoarthritis. Best Pract Res Clin Rheumatol 25:815–823
doi: 10.1016/j.berh.2011.11.013
Harris MD, Anderson AE, Henak CR, Ellis BJ, Peters CL, Weiss JA (2012) Finite element prediction of cartilage contact stresses in normal human hips. J Orthop Res 30:1133–1139
doi: 10.1002/jor.22040
Hayes A (1992) A study of the damage of articular cartilage caused by crystals. Dissertation, University of Bath, Bath.
Henak CR, Ateshian GA, Weiss JA (2014) Finite element prediction of transchondral stress and strain in the human hip. J Biomech Eng 136:021021
doi: 10.1115/1.4026101
Hevesi M, Jacob G, Shimomura K, Ando W, Nakamura N, Krych AJ (2020) Current hip cartilage regeneration/repair modalities: a scoping review of biologics and surgery. Int Orthop 45(2):319–333
doi: 10.1007/s00264-020-04789-2
Hosseini A, Velde SK, Kozanek M, Gill TJ, Grodzinsky AJ, Rubash HE, Li G (2010) In-vivo time-dependent articular cartilage contact behavior of the tibiofemoral joint. Osteoarthr Cartil 18:909–916
doi: 10.1016/j.joca.2010.04.011
Jones B, Hung CT, Ateshian G (2016) Biphasic analysis of cartilage stresses in the patellofemoral joint. J Knee Surg 29:92–98
doi: 10.1055/s-0035-1568989
Kempson GE (1982) Relationship between the tensile properties of articular cartilage from the human knee and age. Ann Rheum Dis 41:508–511
doi: 10.1136/ard.41.5.508
Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR (1978) Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am 60:217–220
doi: 10.2106/00004623-197860020-00014
Lievense AM, Bierma-Zeinstra SMA, Verhagen AP, Bernsen RMD, Verhaar JAN, Koes BW (2003) Influence of sporting activities on the development of osteoarthritis of the hip: a systematic review. Arthritis Rheum 49(2):228–236
doi: 10.1002/art.11012
Li J, Hua X, Jin Z, Fisher J, Wilcox RK (2014a) Biphasic investigation of contact mechanics in natural human hips during activities. Proc Inst Mech Eng H 228:556–563
doi: 10.1177/0954411914537617
Li J, Hua X, Jones A, Williams S, Jin Z, Fisher J, Wilcox RK (2016) The influence of the representation of collagen fibre organisation on the cartilage contact mechanics of the hip joint. J Biomech 49:1679–1685
doi: 10.1016/j.jbiomech.2016.03.050
Li J, Stewart TD, Jin Z, Wilcox RK, Fisher J (2013) The influence of size, clearance, cartilage properties, thickness and hemiarthroplasty on the contact mechanics of the hip joint with biphasic layers. J Biomech 46:1641–1647
doi: 10.1016/j.jbiomech.2013.04.009
Li J, Wang Q, Jin Z, Williams S, Fisher J, Wilcox RK (2014b) Experimental validation of a new biphasic model of the contact mechanics of the porcine hip. Proc Inst Mech Eng H 228:547–555
doi: 10.1177/0954411914537618
Linn FC (1967) Lubrication of animal joints. I. The arthrotripsometer. J Bone Joint Surg Am 49:1079–1098
doi: 10.2106/00004623-196749060-00005
Liu A, Sanderson WJ, Ingham E, Fisher J, Jennings LM (2020) Development of a specimen-specific in vitro pre-clinical simulation model of the human cadaveric knee with appropriate soft tissue constraints. PLoS ONE 15(10):e0238785
doi: 10.1371/journal.pone.0238785
Liu L, Ecker TM, Schumann S, Siebenrock KA, Zheng G (2016) Evaluation of constant thickness cartilage models vs. patient specific cartilage models for an optimized computer-assisted planning of periacetabular osteotomy. PLoS ONE 11:e0146452
doi: 10.1371/journal.pone.0146452
Lund ME, Andersen MS, de Zee M, Rasmussen J (2015) Scaling of musculoskeletal models from static and dynamic trials. Int Biomech 2:1–11
doi: 10.1080/23335432.2014.993706
Mabuma J, Schwarze M, Hurschler C, Markert B, Ehlers W (2015) Effects of osteoarthritis and pathological walking on contact stresses in femoral cartilage. Biomech Model Mechanobiol 14(6):1167–1180
doi: 10.1007/s10237-015-0663-3
Macirowski T, Tepic S, Mann RW (1994) Cartilage stresses in the human hip joint. J Biomech Eng 116:10–18
doi: 10.1115/1.2895693
McCann L, Ingham E, Jin Z, Fisher J (2009) Influence of the meniscus on friction and degradation of cartilage in the natural knee joint. Osteoarthr Cartil 17:995–1000
doi: 10.1016/j.joca.2009.02.012
Modenese L, Phillips ATM (2012) Prediction of hip contact forces and muscle activations during walking at different speeds. Multibody Syst Dyn 28:157–168
doi: 10.1007/s11044-011-9274-7
Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J Biomech Eng 102:73–84
doi: 10.1115/1.3138202
Nakano N, Gohal C, Duong A, Ayeni OR, Khanduja V (2018) Outcomes of cartilage repair techniques for chondral injury in the hip-a systematic review. Int Orthop 42:2309–2322
doi: 10.1007/s00264-018-3862-6
Pawaskar SS, Ingham E, Fisher J, Jin Z (2011) Fluid load support and contact mechanics of hemiarthroplasty in the natural hip joint. Med Eng Phys 33:96–105
doi: 10.1016/j.medengphy.2010.09.009
Pieri ED, Lund ME, Gopalakrishnan A, Rasmussen KP, Lunn DE, Ferguson SF (2018) Refining muscle geometry and wrapping in the TLEM 2 model for improved hip contact force prediction. PLoS ONE 13:e0204109
doi: 10.1371/journal.pone.0204109
Quiroga JM, Wilson W, Ito K, van Donkelaar CC (2017) Relative contribution of articular cartilage’s constitutive components to load support depending on strain rate. Biomech Model Mechanobiol 16:151–158
doi: 10.1007/s10237-016-0807-0
Recnik G, Kralj-Iglic V, Iglic A, Antolic V, Kramberger S, Rigler I, Pompe B, Vengust R (2009) The role of obesity, biomechanical constitution of the pelvis and contact joint stress in progression of hip osteoarthritis. Osteoarthr Cartil 17:879–882
doi: 10.1016/j.joca.2008.12.006
Segal NA, Anderson DD, Iyer KS, Baker J, Torner JC, Lynch JA, Felson DT, Lewis CE, Brown TD (2009) Baseline articular contact stress levels predict incident symptomatic knee osteoarthritis development in the MOST cohort. J Orthop Res 27:1562–1568
doi: 10.1002/jor.20936
Shepherd DE, Seedhom BB (1999) Thickness of human articular cartilage in joints of the lower limb. Ann Rheum Dis 58:27–34
doi: 10.1136/ard.58.1.27
Todd JN, Allan AN, Maak TG, Weiss JA (2021) Characterization and finite element validation of transchondral strain in the human hip during static and dynamic loading. J Biomech 114:110143
doi: 10.1016/j.jbiomech.2020.110143
Todd JN, Maak TG, Ateshian GA, Maas SA, Weiss JA (2018) Hip chondrolabral mechanics during activities of daily living: role of the labrum and interstitial fluid pressurization. J Biomech 69:113–120
doi: 10.1016/j.jbiomech.2018.01.001
Wilson W, van Donkelaar CC, van Rietbergen R, Huiskes R (2005) The role of computational models in the search for the mechanical behavior and damage mechanisms of articular cartilage. Med Eng Phys 2005:810–826
doi: 10.1016/j.medengphy.2005.03.004
Yoshida H, Faust A, Wilckens J, Kitagawa M, Fetto J, Chao EY-S (2006) Three-dimensional dynamic hip contact area and pressure distribution during activities of daily living. J Biomech 39:1996–2004
doi: 10.1016/j.jbiomech.2005.06.026