BASH-GN: a new machine learning-derived questionnaire for screening obstructive sleep apnea.
Machine learning
Obstructive sleep apnea
Questionnaire
Screening
Journal
Sleep & breathing = Schlaf & Atmung
ISSN: 1522-1709
Titre abrégé: Sleep Breath
Pays: Germany
ID NLM: 9804161
Informations de publication
Date de publication:
05 2023
05 2023
Historique:
received:
04
02
2022
accepted:
22
04
2022
revised:
31
03
2022
medline:
29
5
2023
pubmed:
29
4
2022
entrez:
28
4
2022
Statut:
ppublish
Résumé
This study aimed to develop a machine learning-based questionnaire (BASH-GN) to classify obstructive sleep apnea (OSA) risk by considering risk factor subtypes. Participants who met study inclusion criteria were selected from the Sleep Heart Health Study Visit 1 (SHHS 1) database. Other participants from the Wisconsin Sleep Cohort (WSC) served as an independent test dataset. Participants with an apnea hypopnea index (AHI) ≥ 15/h were considered as high risk for OSA. Potential risk factors were ranked using mutual information between each factor and the AHI, and only the top 50% were selected. We classified the subjects into 2 different groups, low and high phenotype groups, according to their risk scores. We then developed the BASH-GN, a machine learning-based questionnaire that consists of two logistic regression classifiers for the 2 different subtypes of OSA risk prediction. We evaluated the BASH-GN on the SHHS 1 test set (n = 1237) and WSC set (n = 1120) and compared its performance with four commonly used OSA screening questionnaires, the Four-Variable, Epworth Sleepiness Scale, Berlin, and STOP-BANG. The model outperformed these questionnaires on both test sets regarding the area under the receiver operating characteristic (AUROC) and the area under the precision-recall curve (AUPRC). The model achieved AUROC (SHHS 1: 0.78, WSC: 0.76) and AUPRC (SHHS 1: 0.72, WSC: 0.74), respectively. The questionnaire is available at https://c2ship.org/bash-gn . Considering OSA subtypes when evaluating OSA risk may improve the accuracy of OSA screening.
Identifiants
pubmed: 35482152
doi: 10.1007/s11325-022-02629-8
pii: 10.1007/s11325-022-02629-8
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
449-457Subventions
Organisme : NHLBI NIH HHS
ID : R21 HL159661
Pays : United States
Organisme : NHLBI NIH HHS
ID : R21HL159661-01
Pays : United States
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM (2013) Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol 177:1006–1014
doi: 10.1093/aje/kws342
pubmed: 23589584
pmcid: 3639722
Gottlieb DJ, Punjabi NM (2020) Diagnosis and management of obstructive sleep apnea: a review. JAMA 323:1389–1400
doi: 10.1001/jama.2020.3514
pubmed: 32286648
Al Lawati NM, Patel SR, Ayas NT (2009) Epidemiology, risk factors, and consequences of obstructive sleep apnea and short sleep duration. Prog Cardiovasc Dis 51:285–293
doi: 10.1016/j.pcad.2008.08.001
pubmed: 19110130
Foster GD, Sanders MH, Millman R, Zammit G, Borradaile KE, Newman AB, Wadden TA, Kelley D, Wing RR, Sunyer FXP (2009) Obstructive sleep apnea among obese patients with type 2 diabetes. Diabetes Care 32:1017–1019
doi: 10.2337/dc08-1776
pubmed: 19279303
pmcid: 2681024
Harris M, Glozier N, Ratnavadivel R, Grunstein RR (2009) Obstructive sleep apnea and depression. Sleep Med Rev 13:437–444
doi: 10.1016/j.smrv.2009.04.001
pubmed: 19596599
Punjabi NM (2008) The epidemiology of adult obstructive sleep apnea. Proc Am Thorac Soc 5:136–143
doi: 10.1513/pats.200709-155MG
pubmed: 18250205
pmcid: 2645248
Mendonca F, Mostafa SS, Ravelo-Garcia AG, Morgado-Dias F, Penzel T (2019) A review of obstructive sleep apnea detection approaches. IEEE J Biomed Health Inform 23:825–837. https://doi.org/10.1109/JBHI.2018.2823265
doi: 10.1109/JBHI.2018.2823265
pubmed: 29993672
Johns MW (1993) Daytime sleepiness, snoring, and obstructive sleep apnea: the Epworth Sleepiness Scale. Chest 103:30–36
doi: 10.1378/chest.103.1.30
pubmed: 8417909
Takegami M, Hayashino Y, Chin K, Sokejima S, Kadotani H, Akashiba T, Kimura H, Ohi M, Fukuhara S (2009) Simple four-variable screening tool for identification of patients with sleep-disordered breathing. Sleep 32:939–948
pubmed: 19639757
pmcid: 2706898
Netzer NC, Stoohs RA, Netzer CM, Clark K, Strohl KP (1999) Using the Berlin questionnaire to identify patients at risk for the sleep apnea syndrome. Ann Intern Med 131:485–491
doi: 10.7326/0003-4819-131-7-199910050-00002
pubmed: 10507956
Ong TH, Raudha S, Fook-Chong S, Lew N, Hsu A (2010) Simplifying STOP-BANG: use of a simple questionnaire to screen for OSA in an Asian population. Sleep and Breathing 14:371–376
doi: 10.1007/s11325-010-0350-7
pubmed: 20419474
Keenan BT, Kim J, Singh B, Bittencourt L, Chen NH, Cistulli PA, Magalang UJ, McArdle N, Mindel JW, Benediktsdottir B, Arnardottir ES, Prochnow LK, Penzel T, Sanner B, Schwab RJ, Shin C, Sutherland K, Tufik S, Maislin G, Gislason T, Pack AI (2018) Recognizable clinical subtypes of obstructive sleep apnea across international sleep centers: a cluster analysis. Sleep 41. https://doi.org/10.1093/sleep/zsx214
Kim J, Keenan BT, Lim DC, Lee SK, Pack AI, Shin C (2018) Mar 15) Symptom-based subgroups of Koreans with obstructive sleep apnea. J Clin Sleep Med 14:437–443. https://doi.org/10.5664/jcsm.6994
doi: 10.5664/jcsm.6994
pubmed: 29510793
pmcid: 5837845
Quan SF, Howard BV, Iber C, Kiley JP, Nieto FJ, O’Connor GT, Rapoport DM, Redline S, Robbins J, Samet JM (1997) The sleep heart health study: design, rationale, and methods. Sleep 20:1077–1085
pubmed: 9493915
Young T, Palta M, Dempsey J, Peppard PE, Nieto FJ, Hla KM (2009) Burden of sleep apnea: rationale, design, and major findings of the Wisconsin Sleep Cohort study. WMJ Off Publ State Med Soc Wis 108:246
Zhang G-Q, Cui L, Mueller R, Tao S, Kim M, Rueschman M, Mariani S, Mobley D, Redline S (2018) The National Sleep Research Resource: towards a sleep data commons. J Am Med Inform Assoc 25:1351–1358
doi: 10.1093/jamia/ocy064
pubmed: 29860441
pmcid: 6188513
Yaggi HK, Strohl KP (2010) Adult obstructive sleep apnea/hypopnea syndrome: definitions, risk factors, and pathogenesis. Clin Chest Med 31:179
doi: 10.1016/j.ccm.2010.02.011
pubmed: 20488280
Koo P, McCool FD, Hale L, Stone K, Eaton CB (2016) Association of obstructive sleep apnea risk factors with nocturnal enuresis in postmenopausal women. Menopause (New York, NY) 23:175
doi: 10.1097/GME.0000000000000517
Young T, Skatrud J, Peppard PE (2004) Risk factors for obstructive sleep apnea in adults. JAMA 291:2013–2016
doi: 10.1001/jama.291.16.2013
pubmed: 15113821
Rundo JV (2019) Obstructive sleep apnea basics. Cleve Clin J Med 86:2–9
doi: 10.3949/ccjm.86.s1.02
pubmed: 31509498
Buman MP, Kline CE, Youngstedt SD, Phillips B, De Mello MT, Hirshkowitz M (2015) Sitting and television viewing: novel risk factors for sleep disturbance and apnea risk? Results from the 2013 National Sleep Foundation Sleep in America Poll. Chest 147:728–734
doi: 10.1378/chest.14-1187
pubmed: 25633255
pmcid: 4364317
Millman RP, Redline S, Carlisle CC, Assaf AR, Levinson PD (1991) Daytime hypertension in obstructive sleep apnea: prevalence and contributing risk factors. Chest 99:861–866
doi: 10.1378/chest.99.4.861
pubmed: 2009787
Hudgel DW (2016) Sleep apnea severity classification—revisited. Sleep 39:1165–1166
doi: 10.5665/sleep.5776
pubmed: 27070135
pmcid: 4835315
Ross BC (2014) Mutual information between discrete and continuous data sets. PLoS ONE 9:e87357
doi: 10.1371/journal.pone.0087357
pubmed: 24586270
pmcid: 3929353
Kale SS, Kakodkar P, Shetiya SH (2018) Assessment of oral findings of dental patients who screen high and no risk for obstructive sleep apnea (OSA) reporting to a dental college-a cross sectional study. Sleep Science 11:112
doi: 10.5935/1984-0063.20180021
pubmed: 30083299
pmcid: 6056072
Chung F, Abdullah HR, Liao P (2016) STOP-BANG questionnaire: a practical approach to screen for obstructive sleep apnea. Chest 149:631–638
doi: 10.1378/chest.15-0903
pubmed: 26378880
Silva GE, Vana KD, Goodwin JL, Sherrill DL, Quan SF (2011) Identification of patients with sleep disordered breathing: comparing the four-variable screening tool, STOP, STOP-BANG, and Epworth Sleepiness Scales. J Clin Sleep Med 7:467–472
Davis J, Goadrich M (2006) The relationship between Precision-Recall and ROC curves. Proceedings of the 23rd international conference on Machine learning, pp 233–240
Nagappa M, Wong J, Singh M, Wong DT, Chung F (2017) An update on the various practical applications of the STOP-BANG questionnaire in anesthesia, surgery, and perioperative medicine. Curr Opin Anaesthesiol 30:118
doi: 10.1097/ACO.0000000000000426
pubmed: 27898430
pmcid: 5214142
Chowdhuri S, Quan SF, Almeida F, Ayappa I, Batool-Anwar S, Budhiraja R, Cruse PE, Drager LF, Griss B, Marshall N (2016) An official American Thoracic Society research statement: impact of mild obstructive sleep apnea in adults. Am J Respir Crit Care Med 193:e37-54
doi: 10.1164/rccm.201602-0361ST
pubmed: 27128710