Climate change increases cross-species viral transmission risk.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
07 2022
Historique:
received: 24 01 2020
accepted: 21 04 2022
pubmed: 29 4 2022
medline: 23 7 2022
entrez: 28 4 2022
Statut: ppublish

Résumé

At least 10,000 virus species have the ability to infect humans but, at present, the vast majority are circulating silently in wild mammals

Identifiants

pubmed: 35483403
doi: 10.1038/s41586-022-04788-w
pii: 10.1038/s41586-022-04788-w
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

555-562

Subventions

Organisme : National Science Foundation (NSF)
ID : NSF BII-2021909
Organisme : National Science Foundation (NSF)
ID : NSF DBI-1639145
Organisme : National Science Foundation (NSF)
ID : BII-2021909
Organisme : United States Agency for International Development (U.S. Agency for International Development)
ID : PREDICT

Commentaires et corrections

Type : CommentIn
Type : CommentIn
Type : CommentIn

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Carlson, C. J., Zipfel, C. M., Garnier, R. & Bansal, S. Global estimates of mammalian viral biodiversity accounting for host sharing. Nat. Ecol. Evol. 3, 1070–1075 (2019).
doi: 10.1038/s41559-019-0910-6
Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).
doi: 10.1038/nature22975
Hoberg, E. P. & Brooks, D. R. Evolution in action: climate change, biodiversity dynamics and emerging infectious disease. Philos. Trans. R. Soc. B 370, 20130553 (2015).
doi: 10.1098/rstb.2013.0553
Morales-Castilla, I. et al. Forecasting parasite sharing under climate change. Philos. Trans. R. Soc. B 376, 20200360 (2021).
doi: 10.1098/rstb.2020.0360
Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).
doi: 10.1038/nature12976
Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
doi: 10.1126/science.1206432
Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).
doi: 10.1038/nature06536
Plowright, R. K. et al. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15, 502–510 (2017).
doi: 10.1038/nrmicro.2017.45
Lloyd-Smith, J. O. et al. Epidemic dynamics at the human–animal interface. Science 326, 1362–1367 (2009).
doi: 10.1126/science.1177345
Albery, G. F., Eskew, E. A., Ross, N. & Olival, K. J. Predicting the global mammalian viral sharing network using phylogeography. Nat. Commun. 11, 2260 (2020).
doi: 10.1038/s41467-020-16153-4
Albery, G. F. et al. The science of the host–virus network. Nat. Microbiol. 6, 1483–1492 (2021).
doi: 10.1038/s41564-021-00999-5
Allen, T. et al. Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 8, 1124 (2017).
doi: 10.1038/s41467-017-00923-8
O’Neill, B. C. et al. The scenario model intercomparison project (scenariomip) for cmip6. Geosci. Model Dev. 9, 3461–3482 (2016).
doi: 10.5194/gmd-9-3461-2016
Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the western hemisphere. Proc. Natl Acad. Sci. USA 109, 8606–8611 (2012).
doi: 10.1073/pnas.1116791109
Davidson, R. et al. Arctic parasitology: why should we care? Trends Parasitol. 27, 239–245 (2011).
doi: 10.1016/j.pt.2011.02.001
Hoberg, E. P. et al. Arctic systems in the quaternary: ecological collision, faunal mosaics and the consequences of a wobbling climate. J. Helminthol. 91, 409–421 (2017).
doi: 10.1017/S0022149X17000347
Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).
doi: 10.1126/science.1162547
Sales, L., Ribeiro, B. R., Chapman, C. A. & Loyola, R. Multiple dimensions of climate change on the distribution of amazon primates. Perspect. Ecol. Conserv. 18, 83–90 (2020).
Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).
doi: 10.1038/s41586-020-2189-9
Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B 285, 20180792 (2018).
doi: 10.1098/rspb.2018.0792
Pauchard, A. et al. Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation. Biol. Invasions 18, 345–353 (2016).
doi: 10.1007/s10530-015-1025-x
Atkinson, C. T. & LaPointe, D. A. Introduced avian diseases, climate change, and the future of hawaiian honeycreepers. J. Avian Med. Surg. 23, 53–63 (2009).
doi: 10.1647/2008-059.1
Pedersen, A. B. & Davies, T. J. Cross-species pathogen transmission and disease emergence in primates. EcoHealth 6, 496–508 (2009).
doi: 10.1007/s10393-010-0284-3
Peel, A. J. et al. Continent-wide panmixia of an African fruit bat facilitates transmission of potentially zoonotic viruses. Nat. Commun. 4, 2770 (2013).
doi: 10.1038/ncomms3770
Riesle-Sbarbaro, S. A. et al. The Gambian epauletted fruit bat shows increased genetic divergence in the Ethiopian highlands and in an area of rapid urbanization. Ecol. Evol. 8, 12803–12820 (2018).
Wu, J. Detection and attribution of the effects of climate change on bat distributions over the last 50 years. Clim. Change 134, 681–696 (2016).
doi: 10.1007/s10584-015-1543-7
Ancillotto, L., Santini, L., Ranc, N., Maiorano, L. & Russo, D. Extraordinary range expansion in a common bat: the potential roles of climate change and urbanisation. Sci. Nat. 103, 15 (2016).
doi: 10.1007/s00114-016-1334-7
Ancillotto, L. et al. What is driving range expansion in a common bat? Hints from thermoregulation and habitat selection. Behav. Processes 157, 540–546 (2018).
doi: 10.1016/j.beproc.2018.06.002
Geluso, K., Mollhagen, T. R., Tigner, J. M. & Bogan, M. A. Westward expansion of the eastern pipistrelle (Pipistrellus subflavus) in the United States, including new records from New Mexico, South Dakota, and Texas. West. N. Am. Naturalist 65, 405–409 (2005).
Kurta, A., Winhold, L., Whitaker, J. O. & Foster, R. Range expansion and changing abundance of the eastern pipistrelle (Chiroptera: Vespertilionidae) in the central Great Lakes region. Am. Midland Naturalist 157, 404–412 (2007).
doi: 10.1674/0003-0031(2007)157[404:REACAO]2.0.CO;2
Lundy, M., Montgomery, I. & Russ, J. Climate change-linked range expansion of Nathusius’ pipistrelle bat, Pipistrellus nathusii (Keyserling & Blasius, 1839). J. Biogeogr. 37, 2232–2242 (2010).
doi: 10.1111/j.1365-2699.2010.02384.x
McCracken, G. F. et al. Rapid range expansion of the Brazilian free-tailed bat in the southeastern United States, 2008–2016. J. Mammal. 99, 312–320 (2018).
doi: 10.1093/jmammal/gyx188
Roberts, B. J., Catterall, C. P., Eby, P. & Kanowski, J. Latitudinal range shifts in Australian flying-foxes: a re-evaluation. Austral Ecol. 37, 12–22 (2012).
doi: 10.1111/j.1442-9993.2011.02243.x
Uhrin, M. et al. Status of Savi’s pipistrelle Hypsugo savii (Chiroptera) and range expansion in Central and south-eastern Europe: a review. Mammal Rev. 46, 1–16 (2016).
doi: 10.1111/mam.12050
Olival, K. in Evolutionary History of Bats: Fossils, Molecules and Morphology (eds Gunnell, G. F. & Simmons, N. B.) 267–316 (Cambridge Univ. Press, 2012).
Olival, K. J. et al. Population genetics of fruit bat reservoir informs the dynamics, distribution and diversity of Nipah virus. Mol. Ecol. 29, 970–985 (2019).
doi: 10.1111/mec.15288
Pigott, D. M. et al. Updates to the zoonotic niche map of Ebola virus disease in Africa. eLife 5, e16412 (2016).
doi: 10.7554/eLife.16412
Bermejo, M. et al. Ebola outbreak killed 5000 gorillas. Science 314, 1564–1564 (2006).
doi: 10.1126/science.1133105
Williams, J. N. Humans and biodiversity: population and demographic trends in the hotspots. Popul. Environ. 34, 510–523 (2013).
doi: 10.1007/s11111-012-0175-3
IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds. Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).
Roberts, K. E., Hadfield, J. D., Sharma, M. D. & Longdon, B. Changes in temperature alter the potential outcomes of virus host shifts. PLoS Pathog. 14, e1007185 (2018).
doi: 10.1371/journal.ppat.1007185
Faust, C. L. et al. Null expectations for disease dynamics in shrinking habitat: dilution or amplification? Philos. Trans. R. Soc. B 372, 20160173 (2017).
doi: 10.1098/rstb.2016.0173
Mollentze, N. & Streicker, D. G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl Acad. Sci. USA 117, 9423–9430 (2020).
doi: 10.1073/pnas.1919176117
Cunningham, A. Infectious disease threats to amphibian conservation. In Proc. The Amphibians and Reptiles of Scotland. (eds McInerny, C. J. & Wilkie, I.) 81–90 (Glasgow Natural History Society, Glasgow, 2018).
VanWormer, E. et al. Viral emergence in marine mammals in the North Pacific may be linked to Arctic sea ice reduction. Sci. Rep. 9, 15569 (2019).
doi: 10.1038/s41598-019-51699-4
Carroll, D. et al. The global virome project. Science 359, 872–874 (2018).
doi: 10.1126/science.aap7463
Becker, D. J. et al. Optimising predictive models to prioritise viral discovery in zoonotic reservoirs. Lancet Microbe https://doi.org/10.1016/S2666-5247(21)00245-7 (2022).
Beyer, R. & Manica, A. Range sizes of the world’s mammals, birds and amphibians from 10,000 BC to 2100 AD. Nat. Commun. 11, 5633 (2020).
Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017). Data from.
doi: 10.1038/nature22975
Washburne, A. D. et al. Taxonomic patterns in the zoonotic potential of mammalian viruses. PeerJ 6, e5979 (2018).
doi: 10.7717/peerj.5979
Grubbs, F. E. et al. Sample criteria for testing outlying observations. Ann. Math. Stat. 21, 27–58 (1950).
doi: 10.1214/aoms/1177729885
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
doi: 10.1002/joc.5086
Hurtt, G. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev 13, 5425–5464 (2018).
doi: 10.5194/gmd-13-5425-2020
Zelinka, M. D. et al. Causes of higher climate sensitivity in cmip6 models. Geophys. Res. Lett. 47, e2019GL085782 (2020).
doi: 10.1029/2019GL085782
Navarro-Racines, C., Tarapues, J., Thornton, P., Jarvis, A. & Ramirez-Villegas, J. High-resolution and bias-corrected cmip5 projections for climate change impact assessments. Sci. Data 7, 7 (2020).
doi: 10.1038/s41597-019-0343-8
Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117–161 (2011).
doi: 10.1007/s10584-011-0153-2
Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).
doi: 10.1038/s41558-019-0406-z
Gao, J. Downscaling Global Spatial Population Projections From 1/8-Degree to 1-km Grid Cells NCAR Technical Note NCAR/TN-537+STR (National Center for Atmospheric Research, 2017).
Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the shared socioeconomic pathways. Environ. Res. Lett. 11, 084003 (2016).
doi: 10.1088/1748-9326/11/8/084003
The IUCN Red List of Threatened Species http://www.iucnredlist.org/ (IUCN, 2019).
Han, B. A. et al. Undiscovered bat hosts of filoviruses. PLoS Negl.Trop. Dis. 10, e0004815 (2016).
doi: 10.1371/journal.pntd.0004815
Renner, I. W. et al. Point process models for presence-only analysis. Methods Ecol. Evol. 6, 366–379 (2015).
doi: 10.1111/2041-210X.12352
Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).
doi: 10.18637/jss.v033.i01
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
doi: 10.1016/j.ecolmodel.2005.03.026
Hastie, T., Tibshirani, R. & Friedman, J. H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2nd edn (Springer, 2009).
Drake, J. M. Range bagging: a new method for ecological niche modelling from presence-only data. J. R. Soc. Interface 12, 20150086 (2015).
doi: 10.1098/rsif.2015.0086
Drake, J. M. & Richards, R. L. Estimating environmental suitability. Ecosphere 9, e02373 (2018).
doi: 10.1002/ecs2.2373
Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5, e157 (2007).
doi: 10.1371/journal.pbio.0050157
Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
doi: 10.1126/science.aai9214
van Vuuren, D. P. et al. The shared socio-economic pathways: trajectories for human development and global environmental change. Global Environ. Change 42, 148–152 (2017).
doi: 10.1016/j.gloenvcha.2016.10.009
Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Global Environ. Change 42, 153–168 (2017).
doi: 10.1016/j.gloenvcha.2016.05.009
Popp, A. et al. Land-use futures in the shared socio-economic pathways. Global Environ. Change 42, 331–345 (2017).
doi: 10.1016/j.gloenvcha.2016.10.002
Samir, K. & Lutz, W. The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100. Global Environ. Change 42, 181–192 (2017).
doi: 10.1016/j.gloenvcha.2014.06.004
Wilman, H. et al. Eltontraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).
doi: 10.1890/13-1917.1
Pacifici, M. et al. Generation length for mammals. Nat. Conserv. 5, 89–94 (2013).
doi: 10.3897/natureconservation.5.5734
Bateman, B. L., Murphy, H. T., Reside, A. E., Mokany, K. & VanDerWal, J. Appropriateness of full-, partial-and no-dispersal scenarios in climate change impact modelling. Divers. Distrib. 19, 1224–1234 (2013).
doi: 10.1111/ddi.12107
Fritz, S. A., Bininda-Emonds, O. R. & Purvis, A. Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol. Lett. 12, 538–549 (2009).
doi: 10.1111/j.1461-0248.2009.01307.x
Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648–2648 (2009).
doi: 10.1890/08-1494.1
Araújo, M. B., Rozenfeld, A., Rahbek, C. & Marquet, P. A. Using species co-occurrence networks to assess the impacts of climate change. Ecography 34, 897–908 (2011).
doi: 10.1111/j.1600-0587.2011.06919.x
Geoghegan, J. L., Senior, A. M., Di Giallonardo, F. & Holmes, E. C. Virological factors that increase the transmissibility of emerging human viruses. Proc. Natl Acad. Sci. USA 113, 4170–4175 (2016).
doi: 10.1073/pnas.1521582113
Walker, J. W., Han, B. A., Ott, I. M. & Drake, J. M. Transmissibility of emerging viral zoonoses. PLoS ONE 13, e0206926 (2018).
doi: 10.1371/journal.pone.0206926
Olival, K. J. et al. Ebola virus antibodies in fruit bats, Bangladesh. Emerg. Infect. Dis. 19, 270–273 (2013).
doi: 10.3201/eid1902.120524
Yang, X.-L. et al. Genetically diverse filoviruses in Rousettus and Eonycteris spp. bats, China, 2009 and 2015. Emerg. Infect. Dis. 23, 482–486 (2017).
doi: 10.3201/eid2303.161119
Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).
doi: 10.1038/sdata.2017.122

Auteurs

Colin J Carlson (CJ)

Department of Biology, Georgetown University, Washington, DC, USA. colin.carlson@georgetown.edu.
Center for Global Health Science & Security, Georgetown University, Washington, DC, USA. colin.carlson@georgetown.edu.

Gregory F Albery (GF)

Department of Biology, Georgetown University, Washington, DC, USA. gfalbery@gmail.com.
EcoHealth Alliance, New York, NY, USA. gfalbery@gmail.com.

Cory Merow (C)

Eversource Energy Center, University of Connecticut, Storrs, CT, USA.

Christopher H Trisos (CH)

African Climate and Development Initiative, University of Cape Town, Cape Town, South Africa.

Casey M Zipfel (CM)

Department of Biology, Georgetown University, Washington, DC, USA.

Evan A Eskew (EA)

EcoHealth Alliance, New York, NY, USA.
Department of Biology, Pacific Lutheran University, Tacoma, WA, USA.

Kevin J Olival (KJ)

EcoHealth Alliance, New York, NY, USA.

Noam Ross (N)

EcoHealth Alliance, New York, NY, USA.

Shweta Bansal (S)

Department of Biology, Georgetown University, Washington, DC, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH