Radiative pattern of intralayer and interlayer excitons in two-dimensional WS
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
28 Apr 2022
28 Apr 2022
Historique:
received:
30
11
2021
accepted:
04
04
2022
entrez:
28
4
2022
pubmed:
29
4
2022
medline:
29
4
2022
Statut:
epublish
Résumé
Two-dimensional (2D) heterostructures (HS) formed by transition-metal dichalcogenide (TMDC) monolayers offer a unique platform for the study of intralayer and interlayer excitons as well as moiré-pattern-induced features. Particularly, the dipolar charge-transfer exciton comprising an electron and a hole, which are confined to separate layers of 2D semiconductors and Coulomb-bound across the heterojunction interface, has drawn considerable attention in the research community. On the one hand, it bears significance for optoelectronic devices, e.g. in terms of charge carrier extraction from photovoltaic devices. On the other hand, its spatially indirect nature and correspondingly high longevity among excitons as well as its out-of-plane dipole orientation render it attractive for excitonic Bose-Einstein condensation studies, which address collective coherence effects, and for photonic integration schemes with TMDCs. Here, we demonstrate the interlayer excitons' out-of-plane dipole orientation through angle-resolved spectroscopy of the HS photoluminescence at cryogenic temperatures, employing a tungsten-based TMDC HS. Within the measurable light cone, the directly-obtained radiation profile of this species clearly resembles that of an in-plane emitter which deviates from that of the intralayer bright excitons as well as the other excitonic HS features recently attributed to artificial superlattices formed by moiré patterns.
Identifiants
pubmed: 35484181
doi: 10.1038/s41598-022-10851-3
pii: 10.1038/s41598-022-10851-3
pmc: PMC9050751
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6939Subventions
Organisme : Deutsche Forschungsgemeinschaft
ID : SFB 1083
Organisme : National Science Foundation
ID : ECCS-1104870
Informations de copyright
© 2022. The Author(s).
Références
Wang, G. et al. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).
doi: 10.1103/RevModPhys.90.021001
Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 8, 899–907 (2014).
doi: 10.1038/nphoton.2014.271
Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).
pubmed: 27471306
doi: 10.1126/science.aac9439
Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).
pubmed: 23132225
doi: 10.1038/nnano.2012.193
Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).
pubmed: 25286273
doi: 10.1038/nnano.2014.215
Wei, G., Stanev, T. K., Czaplewski, D., Jung, I. W. & Stern, N. P. Interfacing monolayer MoS2 with silicon-nitride integrated photonics. in Integrated Photonics Research, Silicon and Nanophotonics, IPRSN 2015 371p (Optical Society of America, 2015). https://doi.org/10.1364/iprsn.2015.im4a.3 .
Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216 (2016).
doi: 10.1038/nphoton.2015.282
Liu, X. & Hersam, M. C. 2D materials for quantum information science. Nat. Rev. Mater. 4, 669–684 (2019).
doi: 10.1038/s41578-019-0136-x
Peyskens, F., Chakraborty, C., Muneeb, M., Van Thourhout, D. & Englund, D. Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. Nat. Commun. 10, 1–7 (2019).
doi: 10.1038/s41467-019-12421-0
He, K. et al. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 113, 26803 (2014).
doi: 10.1103/PhysRevLett.113.026803
Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 76802 (2014).
doi: 10.1103/PhysRevLett.113.076802
Ye, Z. et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature 513, 214–218 (2014).
pubmed: 25162523
doi: 10.1038/nature13734
Plechinger, G. et al. Trion fine structure and coupled spin-valley dynamics in monolayer tungsten disulfide. Nat. Commun. 7, 1–9 (2016).
doi: 10.1038/ncomms12715
You, Y. et al. Observation of biexcitons in monolayer WSe2. Nat. Phys. 11, 477–481 (2015).
doi: 10.1038/nphys3324
Barbone, M. et al. Charge-tuneable biexciton complexes in monolayer WSe2. Nat. Commun. 9, 1–6 (2018).
doi: 10.1038/s41467-018-05632-4
Chen, S. Y., Goldstein, T., Taniguchi, T., Watanabe, K. & Yan, J. Coulomb-bound four- and five-particle intervalley states in an atomically-thin semiconductor. Nat. Commun. 9, 1–8 (2018).
Danovich, M., Zólyomi, V., Fal’ko, V. I. & Aleiner, I. L. Auger recombination of dark excitons in WS2 and WSe2 monolayers. 2D ater. 3, 035011 (2016).
Ruppert, C., Chernikov, A., Hill, H. M., Rigosi, A. F. & Heinz, T. F. The role of electronic and phononic excitation in the optical response of monolayer WS2 after ultrafast excitation. Nano Lett. 17, 644–651 (2017).
pubmed: 28059520
doi: 10.1021/acs.nanolett.6b03513
Fu, J., Cruz, J. M. R. & Qu, F. Valley dynamics of different trion species in monolayer WSe2. Appl. Phys. Lett. 115, 082101 (2019).
doi: 10.1063/1.5112823
Schneider, L. M. et al. Direct measurement of the radiative pattern of bright and dark excitons and exciton complexes in encapsulated tungsten diselenide. Sci. Rep. 10, 8091 (2020).
pubmed: 32415183
pmcid: 7229226
doi: 10.1038/s41598-020-64838-z
Cadiz, F. et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 7, 021026 (2017).
Ajayi, O. A. et al. Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers. 2D Mater. 4, 031011 (2017).
doi: 10.1088/2053-1583/aa6aa1
Schneider, L. M. et al. Shedding light on exciton’s nature in monolayer quantum material by optical dispersion measurements. Opt. Express 27, 37131 (2019).
pubmed: 31878499
doi: 10.1364/OE.27.037131
Schneider, L. M. et al. Optical dispersion of valley-hybridised coherent excitons with momentum-dependent valley polarisation in monolayer semiconductor. 2D Mater. 8, 015009 (2021).
doi: 10.1088/2053-1583/abb5eb
Geim, A. K. & Van der Grigorieva, I. V. Waals heterostructures. Nature 499, 419–425 (2013).
pubmed: 23887427
doi: 10.1038/nature12385
Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).
pubmed: 31578483
doi: 10.1038/s41586-019-1591-7
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
pubmed: 29512651
doi: 10.1038/nature26160
Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).
pubmed: 30679385
doi: 10.1126/science.aav1910
Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).
pubmed: 31666722
doi: 10.1038/s41586-019-1695-0
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).
pubmed: 29512654
doi: 10.1038/nature26154
Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).
pubmed: 32188950
doi: 10.1038/s41586-020-2085-3
Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).
pubmed: 32188951
doi: 10.1038/s41586-020-2092-4
Li, T. et al. Continuous Mott transition in semiconductor moiré superlattices. Nature 597, 350–354 (2021).
pubmed: 34526709
doi: 10.1038/s41586-021-03853-0
Zhang, Y., Devakul, T. & Fu, L. Spin-textured Chern bands in AB-stacked transition metal dichalcogenide bilayers. Proc. Natl. Acad. Sci. USA. 118, e2112673118 (2021).
pubmed: 34475221
pmcid: 8433558
doi: 10.1073/pnas.2112673118
Hunt, B. et al. Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure. Science 340, 1427–1430 (2013).
pubmed: 23686343
doi: 10.1126/science.1237240
Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).
doi: 10.1126/science.aat6981
Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).
pubmed: 33177668
doi: 10.1038/s41586-020-2868-6
Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).
pubmed: 25708612
doi: 10.1038/ncomms7242
Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019).
pubmed: 31727834
doi: 10.1126/science.aaw4194
Yu, J. et al. Observation of double indirect interlayer exciton in WSe 2 /WS 2 heterostructure. Opt. Express 28, 13260 (2020).
pubmed: 32403803
doi: 10.1364/OE.392052
Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).
pubmed: 25065343
doi: 10.1038/ncomms5555
Yuan, L. et al. Twist-angle-dependent interlayer exciton diffusion in WS2–WSe2 heterobilayers. Nat. Mater. 19, 617–623 (2020).
pubmed: 32393806
doi: 10.1038/s41563-020-0670-3
Shah, M., Schneider, L. M. & Rahimi-Iman, A. Observation of intralayer and interlayer excitons in monolayered WSe2/WS2 heterostructure. Semiconductors 53, 2140–2146 (2019).
doi: 10.1134/S1063782619120273
Tongay, S. et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett. 14, 3185–3190 (2014).
pubmed: 24845201
doi: 10.1021/nl500515q
Wang, K. et al. Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano 10, 6612–6622 (2016).
pubmed: 27309275
doi: 10.1021/acsnano.6b01486
Tartakovskii, A. Moiré or not. Nat. Mater. 19, 581–582 (2020).
pubmed: 32461685
doi: 10.1038/s41563-020-0693-9
Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).
pubmed: 30804525
doi: 10.1038/s41586-019-0976-y
Wang, G. et al. In-Plane propagation of light in transition metal dichalcogenide monolayers: Optical selection rules. Phys. Rev. Lett. 119, 47401 (2017).
doi: 10.1103/PhysRevLett.119.047401
Fieramosca, A. et al. Tunable out-of-plane excitons in 2D single-crystal perovskites. ACS Photonics 5, 4179–4185 (2018).
doi: 10.1021/acsphotonics.8b00984
Brotons-Gisbert, M. et al. Out-of-plane orientation of luminescent excitons in two-dimensional indium selenide. Nat. Commun. 10, 1–10 (2019).
doi: 10.1038/s41467-019-11920-4
Lippert, S. et al. Influence of the substrate material on the optical properties of tungsten diselenide monolayers. 2D Mater. 4, 25045 (2017).
doi: 10.1088/2053-1583/aa5b21
Brem, S. et al. Phonon-assisted photoluminescence from indirect excitons in monolayers of transition-metal dichalcogenides. Nano Lett. 20, 2849–2856 (2020).
pubmed: 32084315
pmcid: 7307964
doi: 10.1021/acs.nanolett.0c00633
Shi, J. et al. Twisted-angle-dependent optical behaviors of intralayer excitons and trions in WS2/WSe2 heterostructure. ACS Photonics 6, 3082–3091 (2019).
doi: 10.1021/acsphotonics.9b00855
Laturia, A., Van de Put, M. L. & Vandenberghe, W. G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: From monolayer to bulk. NPJ 2D Mater. Appl. 2, 6 (2018).
doi: 10.1038/s41699-018-0050-x
Persson, K. Materials Data on WSe2 (SG:194) by Materials Project. (2014). https://doi.org/10.17188/1192989 .
Persson, K. Materials Data on WS2 (SG:194) by Materials Project. (2016). https://doi.org/10.17188/1197614 .
Momma, K. & Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).
doi: 10.1107/S0021889811038970