Loss of microglial EED impairs synapse density, learning, and memory.


Journal

Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835

Informations de publication

Date de publication:
07 2022
Historique:
received: 13 09 2021
accepted: 12 04 2022
revised: 07 04 2022
pubmed: 29 4 2022
medline: 22 6 2022
entrez: 28 4 2022
Statut: ppublish

Résumé

The embryonic ectoderm development (EED) is a core component of the polycomb-repressive complex 2 (PRC2) whose mutations are linked to neurodevelopmental abnormalities, intellectual disability, and neurodegeneration. Although EED has been extensively studied in neural stem cells and oligodendrocytes, its role in microglia is incompletely understood. Here, we show that microglial EED is essential for synaptic pruning during the postnatal stage of brain development. The absence of microglial EED at early postnatal stages resulted in reduced spines and impaired synapse density in the hippocampus at adulthood, accompanied by upregulated expression of phagocytosis-related genes in microglia. As a result, deletion of microglial Eed impaired hippocampus-dependent learning and memory in mice. These results suggest that microglial EED is critical for normal synaptic and cognitive functions during postnatal development.

Identifiants

pubmed: 35484239
doi: 10.1038/s41380-022-01576-w
pii: 10.1038/s41380-022-01576-w
doi:

Substances chimiques

Eed protein, mouse 0
Polycomb Repressive Complex 2 EC 2.1.1.43

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2999-3009

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Liu PP, Xu YJ, Dai SK, Du HZ, Wang YY, Li XG, et al. Polycomb protein EED regulates neuronal differentiation through targeting SOX11 in hippocampal dentate Gyrus. Stem Cell Rep. 2019;13:115–31.
doi: 10.1016/j.stemcr.2019.05.010
Ueda T, Nakata Y, Nagamachi A, Yamasaki N, Kanai A, Sera Y, et al. Propagation of trimethylated H3K27 regulated by polycomb protein EED is required for embryogenesis, hematopoietic maintenance, and tumor suppression. Proc Natl Acad Sci USA. 2016;113:10370–5.
pubmed: 27578866 pmcid: 5027452 doi: 10.1073/pnas.1600070113
Margueron R, Justin N, Ohno K, Sharpe ML, Son J, Drury WJ 3rd, et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature. 2009;461:762–7.
pubmed: 19767730 pmcid: 3772642 doi: 10.1038/nature08398
Ueda T, Sanada M, Matsui H, Yamasaki N, Honda ZI, Shih LY, et al. EED mutants impair polycomb repressive complex 2 in myelodysplastic syndrome and related neoplasms. Leukemia. 2012;26:2557–60.
pubmed: 22733077 doi: 10.1038/leu.2012.146
Lessard J, Schumacher A, Thorsteinsdottir U, van Lohuizen M, Magnuson T, Sauvageau G. Functional antagonism of the Polycomb-Group genes eed and Bmi1 in hemopoietic cell proliferation. Genes Dev. 1999;13:2691–703.
pubmed: 10541555 pmcid: 317097 doi: 10.1101/gad.13.20.2691
Richie ER, Schumacher A, Angel JM, Holloway M, Rinchik EM, Magnuson T. The polycomb-group gene eed regulates thymocyte differentiation and suppresses the development of carcinogen-induced T-cell lymphomas. Oncogene. 2002;21:299–306.
pubmed: 11803473 doi: 10.1038/sj.onc.1205051
Sauvageau M, Miller M, Lemieux S, Lessard J, Hebert J, Sauvageau G. Quantitative expression profiling guided by common retroviral insertion sites reveals novel and cell type specific cancer genes in leukemia. Blood. 2008;111:790–9.
pubmed: 17906077 doi: 10.1182/blood-2007-07-098236
Cooney E, Bi W, Schlesinger AE, Vinson S, Potocki L. Novel EED mutation in patient with Weaver syndrome. Am J Med Genet A. 2017;173:541–5.
pubmed: 27868325 doi: 10.1002/ajmg.a.38055
Gibson WT, Hood RL, Zhan SH, Bulman DE, Fejes AP, Moore R, et al. Mutations in EZH2 cause Weaver syndrome. Am J Hum Genet. 2012;90:110–8.
pubmed: 22177091 pmcid: 3257956 doi: 10.1016/j.ajhg.2011.11.018
Schumacher A, Faust C, Magnuson T. Positional cloning of a global regulator of anterior-posterior patterning in mice. Nature. 1996;384:648.
pubmed: 8984348 doi: 10.1038/384648a0
Hirabayashi Y, Suzki N, Tsuboi M, Endo TA, Toyoda T, Shinga J, et al. Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition. Neuron. 2009;63:600–13.
pubmed: 19755104 doi: 10.1016/j.neuron.2009.08.021
Wang J, Yang L, Dong C, Wang J, Xu L, Qiu Y, et al. EED-mediated histone methylation is critical for CNS myelination and remyelination by inhibiting WNT, BMP, and senescence pathways. Sci Adv. 2020;6:eaaz6477.
pubmed: 32851157 pmcid: 7423366 doi: 10.1126/sciadv.aaz6477
Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2018;18:225–42.
pubmed: 29151590 doi: 10.1038/nri.2017.125
Madore C, Yin Z, Leibowitz J, Butovsky O. Microglia, lifestyle stress, and neurodegeneration. Immunity. 2020;52:222–40.
pubmed: 31924476 pmcid: 7234821 doi: 10.1016/j.immuni.2019.12.003
Nayak D, Roth TL, McGavern DB. Microglia development and function. Annu Rev Immunol. 2014;32:367–402.
pubmed: 24471431 pmcid: 5001846 doi: 10.1146/annurev-immunol-032713-120240
Masuda T, Sankowski R, Staszewski O, Bottcher C, Amann L, Sagar, et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature. 2019;566:388–92.
pubmed: 30760929 doi: 10.1038/s41586-019-0924-x
Doorn KJ, Breve JJ, Drukarch B, Boddeke HW, Huitinga I, Lucassen PJ, et al. Brain region-specific gene expression profiles in freshly isolated rat microglia. Front Cell Neurosci. 2015;9:84.
pubmed: 25814934 pmcid: 4357261 doi: 10.3389/fncel.2015.00084
Li Q, Cheng Z, Zhou L, Darmanis S, Neff NF, Okamoto J, et al. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron. 2019;101:207–23 e210.
pubmed: 30606613 doi: 10.1016/j.neuron.2018.12.006
Masuda T, Sankowski R, Staszewski O, Prinz M. Microglia heterogeneity in the single-cell era. Cell Rep. 2020;30:1271–81.
pubmed: 32023447 doi: 10.1016/j.celrep.2020.01.010
Grabert K, Michoel T, Karavolos MH, Clohisey S, Baillie JK, Stevens MP, et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat Neurosci. 2016;19:504–16.
pubmed: 26780511 pmcid: 4768346 doi: 10.1038/nn.4222
Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A, et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity. 2019;50:253–71 e256.
pubmed: 30471926 doi: 10.1016/j.immuni.2018.11.004
Tan YL, Yuan Y, Tian L. Microglial regional heterogeneity and its role in the brain. Mol Psychiatry. 2020;25:351–67.
pubmed: 31772305 doi: 10.1038/s41380-019-0609-8
De Biase LM, Bonci A. Region-specific phenotypes of microglia: the role of local regulatory cues. Neuroscientist. 2019;25:314–33.
pubmed: 30280638 doi: 10.1177/1073858418800996
Ayata P, Badimon A, Strasburger HJ, Duff MK, Montgomery SE, Loh YE, et al. Epigenetic regulation of brain region-specific microglia clearance activity. Nat Neurosci. 2018;21:1049–60.
pubmed: 30038282 pmcid: 6090564 doi: 10.1038/s41593-018-0192-3
Matcovitch-Natan O, Winter DR, Giladi A, Vargas Aguilar S, Spinrad A, Sarrazin S, et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science. 2016;353:aad8670.
pubmed: 27338705 doi: 10.1126/science.aad8670
Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci. 2014;17:400–6.
pubmed: 24487234 doi: 10.1038/nn.3641
Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333:1456–8.
pubmed: 21778362 doi: 10.1126/science.1202529
Filipello F, Morini R, Corradini I, Zerbi V, Canzi A, Michalski B, et al. The microglial innate immune receptor TREM2 is required for synapse elimination and normal brain connectivity. Immunity. 2018;48:979–91 e978.
pubmed: 29752066 doi: 10.1016/j.immuni.2018.04.016
Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017;169:1276–90 e1217.
pubmed: 28602351 doi: 10.1016/j.cell.2017.05.018
Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R, et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity. 2017;47:566–81 e569.
pubmed: 28930663 pmcid: 5719893 doi: 10.1016/j.immuni.2017.08.008
Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci. 2006;26:10129–40.
pubmed: 17021169 pmcid: 6674618 doi: 10.1523/JNEUROSCI.1202-06.2006
Griciuc A, Patel S, Federico AN, Choi SH, Innes BJ, Oram MK, et al. TREM2 acts downstream of CD33 in modulating microglial pathology in Alzheimer’s disease. Neuron. 2019;103:820–35 e827.
pubmed: 31301936 pmcid: 6728215 doi: 10.1016/j.neuron.2019.06.010
Lavarone E, Barbieri CM, Pasini D. Dissecting the role of H3K27 acetylation and methylation in PRC2 mediated control of cellular identity. Nat Commun. 2019;10:1679.
pubmed: 30976011 pmcid: 6459869 doi: 10.1038/s41467-019-09624-w
Wu Y, Dissing-Olesen L, MacVicar BA, Stevens B. Microglia: dynamic mediators of synapse development and plasticity. Trends Immunol. 2015;36:605–13.
pubmed: 26431938 pmcid: 4841266 doi: 10.1016/j.it.2015.08.008
Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci. 2009;29:3974–80.
pubmed: 19339593 pmcid: 6665392 doi: 10.1523/JNEUROSCI.4363-08.2009
Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8.
pubmed: 15831717 doi: 10.1126/science.1110647
Wang C, Yue H, Hu Z, Shen Y, Ma J, Li J, et al. Microglia mediate forgetting via complement-dependent synaptic elimination. Science. 2020;367:688–94.
pubmed: 32029629 doi: 10.1126/science.aaz2288
Andoh M, Koyama R. Microglia regulate synaptic development and plasticity. Dev Neurobiol. 2021;81:568–90.
pubmed: 33583110 pmcid: 8451802 doi: 10.1002/dneu.22814
McCarthy MM. Location, location, location: microglia are where they live. Neuron. 2017;95:233–5.
pubmed: 28728016 doi: 10.1016/j.neuron.2017.07.005
Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, Means TK, et al. The microglial sensome revealed by direct RNA sequencing. Nat Neurosci. 2013;16:1896–905.
pubmed: 24162652 pmcid: 3840123 doi: 10.1038/nn.3554
Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ, et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell. 2014;159:1327–40.
pubmed: 25480297 pmcid: 4364385 doi: 10.1016/j.cell.2014.11.023
Peng H, Geil Nickell CR, Chen KY, McClain JA, Nixon K. Increased expression of M1 and M2 phenotypic markers in isolated microglia after four-day binge alcohol exposure in male rats. Alcohol. 2017;62:29–40.
pubmed: 28755749 pmcid: 5695703 doi: 10.1016/j.alcohol.2017.02.175
Kobayashi K, Imagama S, Ohgomori T, Hirano K, Uchimura K, Sakamoto K, et al. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis. 2013;4:e525.
pubmed: 23470532 pmcid: 3613832 doi: 10.1038/cddis.2013.54
Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–5.
pubmed: 20966214 pmcid: 3719181 doi: 10.1126/science.1194637
Nikodemova M, Kimyon RS, De I, Small AL, Collier LS, Watters JJ. Microglial numbers attain adult levels after undergoing a rapid decrease in cell number in the third postnatal week. J Neuroimmunol. 2015;278:280–8.
pubmed: 25468773 doi: 10.1016/j.jneuroim.2014.11.018
Eich ML, Athar M, Ferguson JE 3rd, Varambally S. EZH2-targeted therapies in cancer: hype or a reality. Cancer Res. 2020;80:5449–58.
pubmed: 32978169 pmcid: 8323716 doi: 10.1158/0008-5472.CAN-20-2147
Laugesen A, Hojfeldt JW, Helin K. Molecular mechanisms directing PRC2 recruitment and H3K27 methylation. Mol Cell. 2019;74:8–18.
pubmed: 30951652 pmcid: 6452890 doi: 10.1016/j.molcel.2019.03.011
Zhang F, Yan Y, Cao X, Zhang J, Li Y, Guo C. Methylation of microRNA-338-5p by EED promotes METTL3-mediated translation of oncogene CDCP1 in gastric cancer. Aging. 2021;13:12224–38.
pubmed: 33882457 pmcid: 8109089 doi: 10.18632/aging.103822
Klus P, Cirillo D, Botta Orfila T, Gaetano Tartaglia G. Neurodegeneration and cancer: where the disorder prevails. Sci Rep. 2015;5:15390.
pubmed: 26493371 pmcid: 4615981 doi: 10.1038/srep15390
Lanni C, Masi M, Racchi M, Govoni S. Cancer and Alzheimer’s disease inverse relationship: an age-associated diverging derailment of shared pathways. Mol Psychiatry. 2021;26:280–95.
pubmed: 32382138 doi: 10.1038/s41380-020-0760-2
Musicco M, Adorni F, Di Santo S, Prinelli F, Pettenati C, Caltagirone C, et al. Inverse occurrence of cancer and Alzheimer disease: a population-based incidence study. Neurology. 2013;81:322–8.
pubmed: 23843468 doi: 10.1212/WNL.0b013e31829c5ec1
Ibanez K, Boullosa C, Tabares-Seisdedos R, Baudot A, Valencia A. Molecular evidence for the inverse comorbidity between central nervous system disorders and cancers detected by transcriptomic meta-analyses. PLoS Genet. 2014;10:e1004173.
pubmed: 24586201 pmcid: 3930576 doi: 10.1371/journal.pgen.1004173
Cheray M, Stratoulias V, Joseph B, Grabert K. The rules of engagement: do microglia seal the fate in the inverse relation of Glioma and Alzheimer’s disease? Front Cell Neurosci. 2019;13:522.
pubmed: 31824268 pmcid: 6879422 doi: 10.3389/fncel.2019.00522
Liu PP, Tang GB, Xu YJ, Zeng YQ, Zhang SF, Du HZ, et al. MiR-203 interplays with polycomb repressive complexes to regulate the proliferation of neural stem/progenitor cells. Stem Cell Rep. 2017;9:190–202.
doi: 10.1016/j.stemcr.2017.05.007
Dai SK, Liu PP, Du HZ, Liu X, Xu YJ, Liu C, et al. Histone crotonylation regulates neural stem cell fate decisions by activating bivalent promoters. EMBO Rep. 2021; 22:e52023.
Tang GB, Zeng YQ, Liu PP, Mi TW, Zhang SF, Dai SK, et al. The histone H3K27 demethylase UTX regulates synaptic plasticity and cognitive behaviors in mice. Front Mol Neurosci. 2017;10:267.
pubmed: 28970783 pmcid: 5609596 doi: 10.3389/fnmol.2017.00267
Cheng Y, Wang ZM, Tan W, Wang X, Li Y, Bai B, et al. Partial loss of psychiatric risk gene Mir137 in mice causes repetitive behavior and impairs sociability and learning via increased Pde10a. Nat Neurosci. 2018;21:1689–703.
pubmed: 30397325 pmcid: 6261680 doi: 10.1038/s41593-018-0261-7
Saura J, Tusell JM, Serratosa J. High-yield isolation of murine microglia by mild trypsinization. Glia. 2003;44:183–9.
pubmed: 14603460 doi: 10.1002/glia.10274
Gao X, Enikolopov G, Chen J. Moderate traumatic brain injury promotes proliferation of quiescent neural progenitors in the adult hippocampus. Exp Neurol. 2009;219:516–23.
pubmed: 19615997 pmcid: 3755611 doi: 10.1016/j.expneurol.2009.07.007

Auteurs

Ying-Ying Wang (YY)

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.

Yu-Sen Deng (YS)

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.

Shang-Kun Dai (SK)

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.

Ting-Wei Mi (TW)

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.

Rui-Yang Li (RY)

Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.

Pei-Pei Liu (PP)

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.

Cong Liu (C)

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.

Bao-Dong He (BD)

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.

Xuan-Cheng He (XC)

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.

Hong-Zhen Du (HZ)

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.

Han-Chen Yang (HC)

Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.

Yi Tang (Y)

Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China. tangyi@xwhosp.org.

Chang-Mei Liu (CM)

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. liuchm@ioz.ac.cn.
Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China. liuchm@ioz.ac.cn.
Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. liuchm@ioz.ac.cn.
Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China. liuchm@ioz.ac.cn.

Zhao-Qian Teng (ZQ)

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. tengzq@ioz.ac.cn.
Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China. tengzq@ioz.ac.cn.
Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. tengzq@ioz.ac.cn.
Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China. tengzq@ioz.ac.cn.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH