Anti-fibrotic effects of pharmacologic FGF-2: a review of recent literature.


Journal

Journal of molecular medicine (Berlin, Germany)
ISSN: 1432-1440
Titre abrégé: J Mol Med (Berl)
Pays: Germany
ID NLM: 9504370

Informations de publication

Date de publication:
06 2022
Historique:
received: 07 01 2022
accepted: 28 03 2022
revised: 09 03 2022
pubmed: 29 4 2022
medline: 9 6 2022
entrez: 28 4 2022
Statut: ppublish

Résumé

Fibrosis is a process of pathological tissue repair that replaces damaged, formerly functional tissue with a non-functional, collagen-rich scar. Complications of fibrotic pathologies, which can arise in numerous organs and from numerous conditions, result in nearly half of deaths in the developed world. Despite this, therapies that target fibrosis at its mechanistic roots are still notably lacking. The ubiquity of the occurrence of fibrosis in myriad organs emphasizes the fact that there are shared mechanisms underlying fibrotic conditions, which may serve as common therapeutic targets for multiple fibrotic diseases of varied organs. Thus, study of the basic science of fibrosis and of anti-fibrotic modalities is critical to therapeutic development and may have potential to translate across organs and disease states. Fibroblast growth factor 2 (FGF-2) is a broadly studied member of the fibroblast growth factors, a family of multipotent cytokines implicated in diverse cellular and tissue processes, which has previously been recognized for its anti-fibrotic potential. However, the mechanisms underlying this potential are not fully understood, nor is the potential for its use to ameliorate fibrosis in diverse pathologies and tissues. Presented here is a review of recent literature that sheds further light on these questions, with the hopes of inspiring further research into the mechanisms underlying the anti-fibrotic activities of FGF-2, as well as the disease conditions for which pharmacologic FGF-2 might be a useful option in the future.

Identifiants

pubmed: 35484303
doi: 10.1007/s00109-022-02194-3
pii: 10.1007/s00109-022-02194-3
doi:

Substances chimiques

Cytokines 0
Fibroblast Growth Factor 2 103107-01-3
Fibroblast Growth Factors 62031-54-3

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

847-860

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210. https://doi.org/10.1002/path.2277
doi: 10.1002/path.2277 pubmed: 18161745 pmcid: 2693329
Walraven M, Hinz B (2018) Therapeutic approaches to control tissue repair and fibrosis: extracellular matrix as a game changer. Matrix Biol 71–72:205–224. https://doi.org/10.1016/j.matbio.2018.02.020
doi: 10.1016/j.matbio.2018.02.020 pubmed: 29499355
Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 117:524–529. https://doi.org/10.1172/JCI31487
doi: 10.1172/JCI31487 pubmed: 17332879 pmcid: 1804380
Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, Cottin V, Flaherty KR, Hansell DM, Inoue Y et al (2014) Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 370:2071–2082. https://doi.org/10.1056/NEJMoa1402584
doi: 10.1056/NEJMoa1402584 pubmed: 24836310
King TE Jr, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, Gorina E, Hopkins PM, Kardatzke D, Lancaster L (2014) A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 370:2083–2092
pubmed: 24836312 doi: 10.1056/NEJMoa1402582
Noble PW, Albera C, Bradford WZ, Costabel U, Du Bois RM, Fagan EA, Fishman RS, Glaspole I, Glassberg MK, Lancaster L (2016) Pirfenidone for idiopathic pulmonary fibrosis: analysis of pooled data from three multinational phase 3 trials. Eur Respir J 47:243–253
pubmed: 26647432 pmcid: 4697914 doi: 10.1183/13993003.00026-2015
Noble PW, Albera C, Bradford WZ, Costabel U, Glassberg MK, Kardatzke D, King TE Jr, Lancaster L, Sahn SA, Szwarcberg J (2011) Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. The Lancet 377:1760–1769
doi: 10.1016/S0140-6736(11)60405-4
Bai X, Nie P, Lou Y, Zhu Y, Jiang S, Li B, Luo P (2021) Pirfenidone is a renal protective drug: Mechanisms, signalling pathways, and preclinical evidence. Eur J Phamarcol 911: 174503
Huang J, Beyer C, Palumbo-Zerr K, Zhang Y, Ramming A, Distler A, Gelse K, Distler O, Schett G, Wollin L (2016) Nintedanib inhibits fibroblast activation and ameliorates fibrosis in preclinical models of systemic sclerosis. Ann Rheum Dis 75:883–890
pubmed: 25858641 doi: 10.1136/annrheumdis-2014-207109
Wollin L, Togbe D, Ryffel B (2020) Effects of nintedanib in an animal model of liver fibrosis. BioMed Res Int
Aimo A, Cerbai E, Bartolucci G, Adamo L, Barison A, Surdo GL, Biagini S, Passino C, Emdin M (2020) Pirfenidone is a cardioprotective drug: mechanisms of action and preclinical evidence. Pharmacol Res 155: 104694
Lewis GA, Dodd S, Clayton D, Bedson E, Eccleson H, Schelbert EB, Naish JH, Jimenez BD, Williams SG, Cunnington C (2021) Pirfenidone in heart failure with preserved ejection fraction: a randomized phase 2 trial. Nat Med 27:1477–1482
pubmed: 34385704 doi: 10.1038/s41591-021-01452-0
Behr J, Prasse A, Kreuter M, Johow J, Rabe KF, Bonella F, Bonnet R, Grohe C, Held M, Wilkens H (2021) Pirfenidone in patients with progressive fibrotic interstitial lung diseases other than idiopathic pulmonary fibrosis (RELIEF): a double-blind, randomised, placebo-controlled, phase 2b trial. Lancet Respir Med 9:476–486
pubmed: 33798455 doi: 10.1016/S2213-2600(20)30554-3
Maher TM, Corte TJ, Fischer A, Kreuter M, Lederer DJ, Molina-Molina M, Axmann J, Kirchgaessler K-U, Samara K, Gilberg F (2020) Pirfenidone in patients with unclassifiable progressive fibrosing interstitial lung disease: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir Med 8:147–157
pubmed: 31578169 doi: 10.1016/S2213-2600(19)30341-8
Wells AU, Flaherty KR, Brown KK, Inoue Y, Devaraj A, Richeldi L, Moua T, Crestani B, Wuyts WA, Stowasser S (2020) Nintedanib in patients with progressive fibrosing interstitial lung diseases—subgroup analyses by interstitial lung disease diagnosis in the INBUILD trial: a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Respir Med 8:453–460
pubmed: 32145830 doi: 10.1016/S2213-2600(20)30036-9
Distler O, Highland KB, Gahlemann M, Azuma A, Fischer A, Mayes MD, Raghu G, Sauter W, Girard M, Alves M (2019) Nintedanib for systemic sclerosis–associated interstitial lung disease. N Engl J Med 380:2518–2528
pubmed: 31112379 doi: 10.1056/NEJMoa1903076
Ornitz DM, Itoh N (2015) The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol 4:215–266. https://doi.org/10.1002/wdev.176
doi: 10.1002/wdev.176 pubmed: 25772309 pmcid: 4393358
Ornitz DM, Itoh N (2001) Fibroblast growth factors. Genome Biol 2: REVIEWS3005. https://doi.org/10.1186/gb-2001-2-3-reviews3005
Kardami E, Koleini N (2022) The role of FGF2 isoforms in cell survival in the heartbiochemistry of apoptosis and autophagy Springer, pp. 269–283.
Freiin von Hövel F, Kefalakes E, Grothe C (2021) What can we learn from FGF-2 isoform-specific mouse mutants? Differential insights into FGF-2 physiology in vivo. Int J Mol Sci 22:390
doi: 10.3390/ijms22010390
Förthmann B, Grothe C, Claus P (2015) A nuclear odyssey: fibroblast growth factor-2 (FGF-2) as a regulator of nuclear homeostasis in the nervous system. Cell Mol Life Sci 72:1651–1662
pubmed: 25552245 doi: 10.1007/s00018-014-1818-6
Kole D, Grella A, Dolivo D, Shumaker L, Hermans W, Dominko T (2017) High molecular weight FGF2 isoforms demonstrate canonical receptor-mediated activity and support human embryonic stem cell self-renewal. Stem Cell Res 21:106–116. https://doi.org/10.1016/j.scr.2017.04.006
doi: 10.1016/j.scr.2017.04.006 pubmed: 28433654 pmcid: 5504699
Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G, Goldfarb M (1996) Receptor specificity of the fibroblast growth factor family. J Biol Chem 271:15292–15297. https://doi.org/10.1074/jbc.271.25.15292
doi: 10.1074/jbc.271.25.15292 pubmed: 8663044
Sarabipour S, Hristova K (2016) Mechanism of FGF receptor dimerization and activation. Nat Commun 7:10262. https://doi.org/10.1038/ncomms10262
doi: 10.1038/ncomms10262 pubmed: 26725515 pmcid: 4725768
Liao S, Porter D, Scott A, Newman G, Doetschman T, Schultz Jel J (2007) The cardioprotective effect of the low molecular weight isoform of fibroblast growth factor-2: the role of JNK signaling. J Mol Cell Cardiol 42:106–120. https://doi.org/10.1016/j.yjmcc.2006.10.005
doi: 10.1016/j.yjmcc.2006.10.005 pubmed: 17150229
Heffron DS, Mandell JW (2005) Opposing roles of ERK and p38 MAP kinases in FGF2-induced astroglial process extension. Mol Cell Neurosci 28:779–790. https://doi.org/10.1016/j.mcn.2004.12.010
doi: 10.1016/j.mcn.2004.12.010 pubmed: 15797724
Ahn HJ, Lee WJ, Kwack K, Do Kwon Y (2009) FGF2 stimulates the proliferation of human mesenchymal stem cells through the transient activation of JNK signaling. FEBS Lett 583:2922–2926. https://doi.org/10.1016/j.febslet.2009.07.056
doi: 10.1016/j.febslet.2009.07.056 pubmed: 19664626
Maher P (1999) p38 mitogen-activated protein kinase activation is required for fibroblast growth factor-2-stimulated cell proliferation but not differentiation. J Biol Chem 274:17491–17498
pubmed: 10364180 doi: 10.1074/jbc.274.25.17491
Su WC, Kitagawa M, Xue N, Xie B, Garofalo S, Cho J, Deng C, Horton WA, Fu XY (1997) Activation of Stat1 by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type II dwarfism. Nature 386:288–292. https://doi.org/10.1038/386288a0
doi: 10.1038/386288a0 pubmed: 9069288
Hart KC, Robertson SC, Kanemitsu MY, Meyer AN, Tynan JA, Donoghue DJ (2000) Transformation and stat activation by derivatives of FGFR1, FGFR3, and FGFR4. Oncogene 19:3309–3320. https://doi.org/10.1038/sj.onc.1203650
doi: 10.1038/sj.onc.1203650 pubmed: 10918587
Dudka AA, Sweet SMM, Heath JK (2010) Signal transducers and activators of transcription-3 binding to the fibroblast growth factor receptor is activated by receptor amplification. Can Res 70:3391–3401. https://doi.org/10.1158/0008-5472.Can-09-3033
doi: 10.1158/0008-5472.Can-09-3033
Ma DK, Ponnusamy K, Song MR, Ming GL, Song H (2009) Molecular genetic analysis of FGFR1 signalling reveals distinct roles of MAPK and PLCgamma1 activation for self-renewal of adult neural stem cells. Mol Brain 2:16. https://doi.org/10.1186/1756-6606-2-16
doi: 10.1186/1756-6606-2-16 pubmed: 19505325 pmcid: 2700800
Maffucci T, Raimondi C, Abu-Hayyeh S, Dominguez V, Sala G, Zachary I, Falasca M (2009) A phosphoinositide 3-kinase/phospholipase Cgamma1 pathway regulates fibroblast growth factor-induced capillary tube formation. PLoS ONE 4:e8285. https://doi.org/10.1371/journal.pone.0008285
doi: 10.1371/journal.pone.0008285 pubmed: 20011604 pmcid: 2788267
Fearon AE, Grose RP (2014) Grb-ing receptor activation by the tail. Nat Struct Mol Biol 21:113–114. https://doi.org/10.1038/nsmb.2767
doi: 10.1038/nsmb.2767 pubmed: 24500424
Shi HX, Lin C, Lin BB, Wang ZG, Zhang HY, Wu FZ, Cheng Y, Xiang LJ, Guo DJ, Luo X et al (2013) The anti-scar effects of basic fibroblast growth factor on the wound repair in vitro and in vivo. PLoS ONE 8:e59966. https://doi.org/10.1371/journal.pone.0059966
doi: 10.1371/journal.pone.0059966 pubmed: 23565178 pmcid: 3615060
Akasaka Y, Ono I, Yamashita T, Jimbow K, Ishii T (2004) Basic fibroblast growth factor promotes apoptosis and suppresses granulation tissue formation in acute incisional wounds. J Pathol 203:710–720. https://doi.org/10.1002/path.1574
doi: 10.1002/path.1574 pubmed: 15141387
McGee GS, Davidson JM, Buckley A, Sommer A, Woodward SC, Aquino AM, Barbour R, Demetriou AA (1988) Recombinant basic fibroblast growth factor accelerates wound healing. J Surg Res 45:145–153. https://doi.org/10.1016/0022-4804(88)90034-0
doi: 10.1016/0022-4804(88)90034-0 pubmed: 3392988
Spyrou GE, Naylor IL (2002) The effect of basic fibroblast growth factor on scarring. Br J Plast Surg 55:275–282. https://doi.org/10.1054/bjps.2002.3831
doi: 10.1054/bjps.2002.3831 pubmed: 12160530
Ono I, Akasaka Y, Kikuchi R, Sakemoto A, Kamiya T, Yamashita T, Jimbow K (2007) Basic fibroblast growth factor reduces scar formation in acute incisional wounds. Wound Repair Regen 15:617–623. https://doi.org/10.1111/j.1524-475X.2007.00293.x
doi: 10.1111/j.1524-475X.2007.00293.x pubmed: 17971006
Akita S, Akino K, Imaizumi T, Hirano A (2008) Basic fibroblast growth factor accelerates and improves second-degree burn wound healing. Wound Repair Regen 16:635–641. https://doi.org/10.1111/j.1524-475X.2008.00414.x
doi: 10.1111/j.1524-475X.2008.00414.x pubmed: 19128258
Akita S, Akino K, Imaizumi T, Tanaka K, Anraku K, Yano H, Hirano A (2006) The quality of pediatric burn scars is improved by early administration of basic fibroblast growth factor. J Burn Care Res 27:333–338. https://doi.org/10.1097/01.BCR.0000216742.23127.7A
doi: 10.1097/01.BCR.0000216742.23127.7A pubmed: 16679903
Dolivo DM, Larson SA, Dominko T (2017) Fibroblast growth factor 2 as an antifibrotic: antagonism of myofibroblast differentiation and suppression of pro-fibrotic gene expression. Cytokine Growth Factor Rev 38:49–58. https://doi.org/10.1016/j.cytogfr.2017.09.003
doi: 10.1016/j.cytogfr.2017.09.003 pubmed: 28967471 pmcid: 5705586
Nunes QM, Li Y, Sun CY, Kinnunen TK, Fernig DG (2016) Fibroblast growth factors as tissue repair and regeneration therapeutics. Peerj 4: e1535. ARTN e153510.7717/peerj.1535
Abdelhakim M, Lin X, Ogawa R (2020) The Japanese experience with basic fibroblast growth factor in cutaneous wound management and scar prevention: a systematic review of clinical and biological aspects. Dermatology and Therapy 10:569–587
pubmed: 32506250 pmcid: 7367968 doi: 10.1007/s13555-020-00407-6
Nusayr E, Sadideen DT, Doetschman T (2013) FGF2 modulates cardiac remodeling in an isoform‐and sex‐specific manner. Physiol Rep 1
Shen D-p GE, D-h WU Y-q, Lei L, Chu M-p (2018) Effect of bFGF on promoting angiogenesis in infarct area and improving myocardial fibrosis in mouse myocardial infarction model. Chin J Pathol 34:47–51
Rao Z, Shen D, Chen J, Jin L, Wu X, Chen M, Li L, Chu M, Lin J (2020) Basic fibroblast growth factor attenuates injury in myocardial infarction by enhancing hypoxia-inducible factor-1 Alpha accumulation. Front Pharmacol 11:1193
pubmed: 32848793 pmcid: 7427464 doi: 10.3389/fphar.2020.01193
Fan Z, Xu Z, Niu H, Sui Y, Li H, Ma J, Guan J (2019) Spatiotemporal delivery of basic fibroblast growth factor to directly and simultaneously attenuate cardiac fibrosis and promote cardiac tissue vascularization following myocardial infarction. J Control Release 311:233–244
pubmed: 31521744 doi: 10.1016/j.jconrel.2019.09.005
Fu B, Wang X, Chen Z, Jiang N, Guo Z, Zhang Y, Zhang S, Liu X, Liu L (2022) Improved myocardial performance in infarcted rat heart by injection of disulfide-cross-linked chitosan hydrogels loaded with basic fibroblast growth factor. J Mater Chem B
Nagasawa A, Masumoto H, Yanagi S, Kanemitsu N, Ikeda T, Tabata Y, Minatoya K (2019) Basic fibroblast growth factor attenuates left-ventricular remodeling following surgical ventricular restoration in a rat ischemic cardiomyopathy model. Gen Thorac Cardiovasc Surg 1–8
Erndt-Marino JD, Jimenez-Vergara AC, Diaz-Rodriguez P, Kulwatno J, Diaz-Quiroz JF, Thibeault S, Hahn MS (2018) In vitro evaluation of a basic fibroblast growth factor-containing hydrogel toward vocal fold lamina propria scar treatment. J Biomed Mater Res B Appl Biomater 106:1258–1267
pubmed: 28580765 doi: 10.1002/jbm.b.33936
Suzuki R, Kawai Y, Tsuji T, Hiwatashi N, Kishimoto Y, Tateya I, Nakamura T, Hirano S (2017) Prevention of vocal fold scarring by local application of basic fibroblast growth factor in a rat vocal fold injury model. Laryngoscope 127:E67–E74
pubmed: 27411786 doi: 10.1002/lary.26138
Kobayashi T, Mizuta M, Hiwatashi N, Kishimoto Y, Nakamura T, Kanemaru S-i, Hirano S (2017) Drug delivery system of basic fibroblast growth factor using gelatin hydrogel for restoration of acute vocal fold scar. Auris Nasus Larynx 44:86–92
pubmed: 27126068 doi: 10.1016/j.anl.2016.04.005
Hiwatashi N, Hirano S, Mizuta M, Kobayashi T, Kawai Y, Kanemaru SI, Nakamura T, Ito J, Kawai K, Suzuki S (2017) The efficacy of a novel collagen-gelatin scaffold with basic fibroblast growth factor for the treatment of vocal fold scar. J Tissue Eng Regen Med 11:1598–1609. https://doi.org/10.1002/term.2060
doi: 10.1002/term.2060 pubmed: 26119035
Imaizumi M, Nakamura R, Nakaegawa Y, Dirja BT, Tada Y, Tani A, Sugino T, Tabata Y, Omori K (2021) Regenerative potential of basic fibroblast growth factor contained in biodegradable gelatin hydrogel microspheres applied following vocal fold injury: Early effect on tissue repair in a rabbit model. Braz J Otorhinolaryngol 87:274–282
pubmed: 31711791 doi: 10.1016/j.bjorl.2019.09.003
Ban MJ, Park JH, Kim JW, Park KN, Lee JY, Kim HK, Lee SW (2017) The efficacy of fibroblast growth factor for the treatment of chronic vocal fold scarring: from animal model to clinical application. Clinical and experimental otorhinolaryngology 10:349
pubmed: 27671715 doi: 10.21053/ceo.2016.00941
Kim Y-S, Hong G, Kim DH, Kim YM, Kim Y-K, Oh Y-M, Jee Y-K (2018) The role of FGF-2 in smoke-induced emphysema and the therapeutic potential of recombinant FGF-2 in patients with COPD. Exp Mol Med 50:1–10
pubmed: 30559345 pmcid: 6283868
Zhang S, Qiu X, Zhang Y, Fu K, Zhao X, Wu J, Hu Y, Zhu W, Guo H (2015) Basic fibroblast growth factor ameliorates endothelial dysfunction in radiation-induced bladder injury. BioMed Res Int
Pena LA, Fuks Z, Kolesnick RN (2000) Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Can Res 60:321–327
Gu Q, Wang D, Wang X, Peng R, Liu J, Jiang T, Wang Z, Wang S, Deng H (2004) Basic fibroblast growth factor inhibits radiation-induced apoptosis of HUVECs. I. The PI3K/AKT pathway and induction of phosphorylation of BAD. Radiat Res 161:692–702
pubmed: 15161350 doi: 10.1667/RR3158
Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, Haimovitz-Friedman A, Cordon-Cardo C, Kolesnick R (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293: 293–297
Guan D, Mi J, Chen X, Wu Y, Yao Y, Wang L, Xiao Z, Zhao Y, Chen B, Dai J (2018) Lung endothelial cell-targeted peptide-guided bFGF promotes the regeneration after radiation induced lung injury. Biomaterials 184:10–19
pubmed: 30195801 doi: 10.1016/j.biomaterials.2018.08.061
Guzy RD, Stoilov I, Elton TJ, Mecham RP, Ornitz DM (2015) Fibroblast growth factor 2 is required for epithelial recovery, but not for pulmonary fibrosis, in response to bleomycin. Am J Respir Cell Mol Biol 52:116–128
pubmed: 24988442 pmcid: 4370255 doi: 10.1165/rcmb.2014-0184OC
Koo HY, El-Baz LM, House S, Cilvik SN, Dorry SJ, Shoukry NM, Salem ML, Hafez HS, Dulin NO, Ornitz DM (2018) Fibroblast growth factor 2 decreases bleomycin-induced pulmonary fibrosis and inhibits fibroblast collagen production and myofibroblast differentiation. J Pathol 246:54–66
pubmed: 29873400 pmcid: 6175645 doi: 10.1002/path.5106
Dorry SJ, Ansbro BO, Ornitz DM, Mutlu GM, Guzy RD (2020) FGFR2 is required for AEC2 homeostasis and survival after bleomycin-induced lung injury. Am J Respir Cell Mol Biol 62:608–621
pubmed: 31860803 pmcid: 7193788 doi: 10.1165/rcmb.2019-0079OC
MacKenzie B, Henneke I, Hezel S, Al Alam D, El Agha E, Chao C-M, Quantius J, Wilhelm J, Jones M, Goth K (2015) Attenuating endogenous Fgfr2b ligands during bleomycin-induced lung fibrosis does not compromise murine lung repair. Am J Physiol Lung Cell Mol Physiol 308:L1014–L1024
pubmed: 25820524 pmcid: 4437006 doi: 10.1152/ajplung.00291.2014
Dolivo DM, Larson SA, Dominko T (2017) FGF2-mediated attenuation of myofibroblast activation is modulated by distinct MAPK signaling pathways in human dermal fibroblasts. J Dermatol Sci 88:339–348. https://doi.org/10.1016/j.jdermsci.2017.08.013
doi: 10.1016/j.jdermsci.2017.08.013 pubmed: 28899582 pmcid: 5701866
Sandbo N, Kregel S, Taurin S, Bhorade S, Dulin NO (2009) Critical role of serum response factor in pulmonary myofibroblast differentiation induced by TGF-β. Am J Respir Cell Mol Biol 41:332–338
pubmed: 19151320 pmcid: 2742753 doi: 10.1165/rcmb.2008-0288OC
Small EM (2012) The actin–MRTF–SRF gene regulatory axis and myofibroblast differentiation. J Cardiovasc Transl Res 5:794–804
pubmed: 22898751 doi: 10.1007/s12265-012-9397-0
Chai J, Norng M, Tarnawski AS, Chow J (2007) A critical role of serum response factor in myofibroblast differentiation during experimental oesophageal ulcer healing in rats. Gut 56:621–630
pubmed: 17068115 doi: 10.1136/gut.2006.106674
Qiu P, Feng X-H, Li L (2003) Interaction of Smad3 and SRF-associated complex mediates TGF-β1 signals to regulate SM22 transcription during myofibroblast differentiation. J Mol Cell Cardiol 35:1407–1420
pubmed: 14654367 doi: 10.1016/j.yjmcc.2003.09.002
Morizumi S, Sato S, Koyama K, Okazaki H, Chen Y, Goto H, Kagawa K, Ogawa H, Nishimura H, Kawano H (2020) Blockade of pan-fibroblast growth factor receptors mediates bidirectional effects in lung fibrosis. Am J Respir Cell Mol Biol 63:317–326
pubmed: 32338990 doi: 10.1165/rcmb.2019-0090OC
Guzy RD, Li L, Smith C, Dorry SJ, Koo HY, Chen L, Ornitz DM (2017) Pulmonary fibrosis requires cell-autonomous mesenchymal fibroblast growth factor (FGF) signaling. J Biol Chem 292:10364–10378. https://doi.org/10.1074/jbc.M117.791764
doi: 10.1074/jbc.M117.791764 pubmed: 28487375 pmcid: 5481550
MacKenzie B, Korfei M, Henneke I, Sibinska Z, Tian X, Hezel S, Dilai S, Wasnick R, Schneider B, Wilhelm J (2015) Increased FGF1-FGFRc expression in idiopathic pulmonary fibrosis. Respir Res 16:1–15
doi: 10.1186/s12931-015-0242-2
Hamada N, Kuwano K, Yamada M, Hagimoto N, Hiasa K, Egashira K, Nakashima N, Maeyama T, Yoshimi M, Nakanishi Y (2005) Anti-vascular endothelial growth factor gene therapy attenuates lung injury and fibrosis in mice. J Immunol 175:1224–1231
pubmed: 16002726 doi: 10.4049/jimmunol.175.2.1224
Abdollahi A, Li M, Ping G, Plathow C, Domhan S, Kiessling F, Lee LB, McMahon G, Gröne H-J, Lipson KE (2005) Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis. J Exp Med 201:925–935
pubmed: 15781583 pmcid: 2213091 doi: 10.1084/jem.20041393
Guzy R (2020) Fibroblast growth factor inhibitors in lung fibrosis: friends or foes? Amer Thorac Soc pp. 273–274.
Mardhian DF, Vrynas A, Storm G, Bansal R, Prakash J (2020) FGF2 engineered SPIONs attenuate tumor stroma and potentiate the effect of chemotherapy in 3D heterospheroidal model of pancreatic tumor. Nanotheranostics 4:26
pubmed: 31911892 pmcid: 6940204 doi: 10.7150/ntno.38092
Kurniawan DW, Booijink R, Pater L, Wols I, Vrynas A, Storm G, Prakash J, Bansal R (2020) Fibroblast growth factor 2 conjugated superparamagnetic iron oxide nanoparticles (FGF2-SPIONs) ameliorate hepatic stellate cells activation in vitro and acute liver injury in vivo. J Control Release 328:640–652
pubmed: 32979454 doi: 10.1016/j.jconrel.2020.09.041
Borrelli MR, Shen AH, Griffin M, Mascharak S, Adem S, Deleon NMD, Ngaage LM, Longaker MT, Wan DC, Lorenz HP (2021) A novel xenograft model demonstrates human fibroblast behavior during skin wound repair and fibrosis. Adv Wound Care
Jin H, Quesada C, Aliabouzar M, Kripfgans OD, Franceschi RT, Liu J, Putnam AJ, Fabiilli ML (2021) Release of basic fibroblast growth factor from acoustically-responsive scaffolds promotes therapeutic angiogenesis in the hind limb ischemia model. J Control Release 338:773–783
pubmed: 34530052 doi: 10.1016/j.jconrel.2021.09.013
Wang Q, Dong X, Zhang H, Li P, Lu X, Wu M, Zhang W, Lin X, Zheng Y, Mao Y (2021) A novel hydrogel-based combination therapy for effective neuroregeneration after spinal cord injury. Chem Eng J 415: 128964
Morscheid YP, Venkatesan JK, Schmitt G, Orth P, Zurakowski D, Speicher-Mentges S, Menger MD, Laschke MW, Cucchiarini M, Madry H (2021) rAAV-mediated human FGF-2 gene therapy enhances osteochondral repair in a clinically relevant large animal model over time in vivo. Am J Sports Med 49:958–969
pubmed: 33606561 doi: 10.1177/0363546521988941
Jiang P, Tang X, Wang H, Dai C, Su J, Zhu H, Song M, Liu J, Nan Z, Ru T (2019) Collagen-binding basic fibroblast growth factor improves functional remodeling of scarred endometrium in uterine infertile women: a pilot study. Science China Life Sciences 62:1617–1629
pubmed: 31515729 doi: 10.1007/s11427-018-9520-2
Feng M, Betti M (2018) A novel collagen glycopeptide, Pro-Hyp-CONH-GlcN, stimulates cell proliferation and hyaluronan production in cultured human dermal fibroblasts. J Funct Foods 45:277–287
doi: 10.1016/j.jff.2018.04.022
Gallego-Munoz P, Ibares-Frias L, Valsero-Blanco MC, Cantalapiedra-Rodriguez R, Merayo-Lloves J, Martinez-Garcia MC (2017) Effects of TGFbeta1, PDGF-BB, and bFGF, on human corneal fibroblasts proliferation and differentiation during stromal repair. Cytokine 96:94–101. https://doi.org/10.1016/j.cyto.2017.03.011
doi: 10.1016/j.cyto.2017.03.011 pubmed: 28390267
Liguori TTA, Liguori GR, Moreira LFP, Harmsen MC (2018) Fibroblast growth factor-2, but not the adipose tissue-derived stromal cells secretome, inhibits TGF-β1-induced differentiation of human cardiac fibroblasts into myofibroblasts. Sci Rep 8:1–10
doi: 10.1038/s41598-018-34747-3
Matsumura T, Fujimoto T, Futakuchi A, Takihara Y, Watanabe-Kitamura F, Takahashi E, Inoue-Mochita M, Tanihara H, Inoue T (2020) TGF-β-induced activation of conjunctival fibroblasts is modulated by FGF-2 and substratum stiffness. PloS One 15: e0242626
Yang L, Hashimoto K, Tohyama M, Okazaki H, Dai X, Hanakawa Y, Sayama K, Shirakata Y (2012) Interactions between myofibroblast differentiation and epidermogenesis in constructing human living skin equivalents. J Dermatol Sci 65:50–57
pubmed: 22169155 doi: 10.1016/j.jdermsci.2011.10.008
Yang L, Zhang D, Wu H, Xie S, Zhang M, Zhang B, Tang S (2018) Basic fibroblast growth factor influences epidermal homeostasis of living skin equivalents through affecting fibroblast phenotypes and functions. Skin pharmacology and physiology 31:229–237
pubmed: 29847822 doi: 10.1159/000488992
Gonzalez Rodriguez A, Schroeder ME, Walker CJ, Anseth KS (2018) FGF-2 inhibits contractile properties of valvular interstitial cell myofibroblasts encapsulated in 3D MMP-degradable hydrogels. APL BioEngineering 2: 046104
Maltseva O, Folger P, Zekaria D, Petridou S, Masur SK (2001) Fibroblast growth factor reversal of the corneal myofibroblast phenotype. Invest Ophthalmol Vis Sci 42:2490–2495
pubmed: 11581188
Tall EG, Bernstein AM, Oliver N, Gray JL, Masur SK (2010) TGF-beta-stimulated CTGF production enhanced by collagen and associated with biogenesis of a novel 31-kDa CTGF form in human corneal fibroblasts. Invest Ophthalmol Vis Sci 51:5002–5011. https://doi.org/10.1167/iovs.09-5110
doi: 10.1167/iovs.09-5110 pubmed: 20393108 pmcid: 3066619
Tan EM, Rouda S, Greenbaum SS, Moore JH Jr, Fox JWt, Sollberg S, (1993) Acidic and basic fibroblast growth factors down-regulate collagen gene expression in keloid fibroblasts. Am J Pathol 142:463–470
pubmed: 7679551 pmcid: 1886728
Latif N, Quillon A, Sarathchandra P, McCormack A, Lozanoski A, Yacoub MH, Chester AH (2015) Modulation of human valve interstitial cell phenotype and function using a fibroblast growth factor 2 formulation. Plos One 10: e0127844. ARTN e0127844. http://doi.org/10.1371/journal.pone.0127844
Cushing MC, Mariner PD, Liao JT, Sims EA, Anseth KS (2008) Fibroblast growth factor represses Smad-mediated myofibroblast activation in aortic valvular interstitial cells. FASEB J 22:1769–1777. https://doi.org/10.1096/fj.07-087627
doi: 10.1096/fj.07-087627 pubmed: 18218921 pmcid: 2493079
Akatsu Y, Takahashi N, Yoshimatsu Y, Kimuro S, Muramatsu T, Katsura A, Maishi N, Suzuki HI, Inazawa J, Hida K (2019) Fibroblast growth factor signals regulate transforming growth factor-β-induced endothelial-to-myofibroblast transition of tumor endothelial cells via Elk1. Mol Oncol 13:1706–1724
pubmed: 31094056 pmcid: 6670013 doi: 10.1002/1878-0261.12504
Kashpur O, LaPointe D, Ambady S, Ryder EF, Dominko T (2013) FGF2-induced effects on transcriptome associated with regeneration competence in adult human fibroblasts. BMC Genomics 14:656. https://doi.org/10.1186/1471-2164-14-656
doi: 10.1186/1471-2164-14-656 pubmed: 24066673 pmcid: 3849719
Wu B, Tang X, Zhou Z, Ke H, Tang S, Ke R (2021) RNA sequencing analysis of FGF2-responsive transcriptome in skin fibroblasts. PeerJ 9: e10671
Xuan Y, Chi L, Tian H, Cai W, Sun C, Wang T, Zhou X, Shao M, Zhu Y, Niu C (2016) The activation of the NF-κB-JNK pathway is independent of the PI3K-Rac1-JNK pathway involved in the bFGF-regulated human fibroblast cell migration. J Dermatol Sci 82:28–37
pubmed: 26829882 doi: 10.1016/j.jdermsci.2016.01.003
Wang X, Zhu Y, Sun C, Wang T, Shen Y, Cai W, Sun J, Chi L, Wang H, Song N (2017) Feedback activation of basic fibroblast growth factor signaling via the Wnt/β-catenin pathway in skin fibroblasts. Front Pharmacol 8:32
pubmed: 28217097 pmcid: 5289949
Zhu ZX, Sun CC, Zhu YT, Wang Y, Wang T, Chi LS, Cai WH, Zheng JY, Zhou X, Cong WT (2017) Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration. Exp Cell Res 355:83–94
pubmed: 28363830 doi: 10.1016/j.yexcr.2017.03.054
Fortier SM, Penke LR, King D, Pham TX, Ligresti G, Peters-Golden M (2021) Myofibroblast dedifferentiation proceeds via distinct transcriptomic and phenotypic transitions. JCI Insight 6
Awan B, Turkov D, Schumacher C, Jacobo A, McEnerney A, Ramsey A, Xu G, Park D, Kalomoiris S, Yao W (2018) FGF2 induces migration of human bone marrow stromal cells by increasing core fucosylations on N-glycans of integrins. Stem cell reports 11:325–333
pubmed: 29983388 pmcid: 6093088 doi: 10.1016/j.stemcr.2018.06.007
Horton ER, Vallmajo-Martin Q, Martin I, Snedeker JG, Ehrbar M, Blache U (2020) Extracellular matrix production by mesenchymal stromal cells in hydrogels facilitates cell spreading and is inhibited by FGF-2. Adv Healthcare Mater 9:1901669
doi: 10.1002/adhm.201901669
Gao Y, Li N, Xue Q, Fan X, Liu X, Han L (2022) Basic fibroblast growth factor inhibits aortic valvular interstitial cells calcification via Notch1 pathway. J Investig Med
Nowwarote N, Manokawinchoke J, Kanjana K, Fournier BP, Sukarawan W, Osathanon T (2020) Transcriptome analysis of basic fibroblast growth factor treated stem cells isolated from human exfoliated deciduous teeth. Heliyon 6: e04246
Gupta S, M-Redmond T, Meng F, Tidball A, Akil H, Watson S, Parent JM, Uhler M, (2018) Fibroblast growth factor 2 regulates activity and gene expression of human post-mitotic excitatory neurons. J Neurochem 145:188–203
pubmed: 29168882 doi: 10.1111/jnc.14255
Benington L, Rajan G, Locher C, Lim LY (2020) Fibroblast growth factor 2—a review of stabilisation approaches for clinical applications. Pharmaceutics 12:508
pmcid: 7356611 doi: 10.3390/pharmaceutics12060508
Benington LR, Rajan G, Locher C, Lim LY (2021) Stabilisation of recombinant human basic fibroblast growth factor (FGF-2) against stressors encountered in medicinal product processing and evaluation. Pharmaceutics 13:1762
pubmed: 34834177 pmcid: 8624598 doi: 10.3390/pharmaceutics13111762
Vojtová L, Pavliňáková V, Muchová J, Kacvinská K, Brtníková J, Knoz M, Lipový B, Faldyna M, Göpfert E, Holoubek J (2021) Healing and angiogenic properties of collagen/chitosan scaffolds enriched with hyperstable FGF2-STAB
pubmed: 34067330 pmcid: 8224647 doi: 10.3390/biomedicines9060590
Dvorak P, Bednar D, Vanacek P, Balek L, Eiselleova L, Stepankova V, Sebestova E, Kunova Bosakova M, Konecna Z, Mazurenko S (2018) Computer-assisted engineering of hyperstable fibroblast growth factor 2. Biotechnol Bioeng 115:850–862
pubmed: 29278409 doi: 10.1002/bit.26531
Benbow NL, Karpiniec S, Krasowska M, Beattie DA (2020) Incorporation of FGF-2 into pharmaceutical grade fucoidan/chitosan polyelectrolyte multilayers. Mar Drugs 18:531
pmcid: 7692699 doi: 10.3390/md18110531
Liu X, Liu W-C, Wang H-Y, Li VL, Chen Y-C, Wang A-N, Wu C-J, Li Y, Zhao G, Lin C (2021) Polyelectrolyte multilayer composite coating on 316 L stainless steel for controlled release of dual growth factors accelerating restoration of bone defects. Mater Sci Eng C 126: 112187
Ding I, Peterson AM (2021) Half-life modeling of basic fibroblast growth factor released from growth factor-eluting polyelectrolyte multilayers. Sci Rep 11:1–13
doi: 10.1038/s41598-020-79139-8
Mays EA, Kallakuri SS, Sundararaghavan HG (2020) Heparin-hyaluronic acid nanofibers for growth factor sequestration in spinal cord repair. J Biomed Mater Res, Part A 108:2023–2031
doi: 10.1002/jbm.a.36962
Federico S, Pitarresi G, Palumbo FS, Fiorica C, Catania V, Schillaci D, Giammona G (2021) An asymmetric electrospun membrane for the controlled release of ciprofloxacin and FGF-2: evaluation of antimicrobial and chemoattractant properties. Mater Sci Eng C 123: 112001
Clauder F, Zitzmann FD, Friebe S, Mayr SG, Robitzki AA, Beck-Sickinger AG (2020) Multifunctional coatings combining bioactive peptides and affinity-based cytokine delivery for enhanced integration of degradable vascular grafts. Biomater Sci 8:1734–1747
pubmed: 31998886 doi: 10.1039/C9BM01801H
Nilasaroya A, Kop AM, Morrison DA (2021) Heparin-functionalized hydrogels as growth factor-signaling substrates. J Biomed Mater Res Part A 109:374–384
doi: 10.1002/jbm.a.37030

Auteurs

David M Dolivo (DM)

Northwestern University, Chicago, IL, 60611, USA. david.dolivo@gmail.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH