Gut microbiota of ring-tailed lemurs (Lemur catta) vary across natural and captive populations and correlate with environmental microbiota.
Journal
Animal microbiome
ISSN: 2524-4671
Titre abrégé: Anim Microbiome
Pays: England
ID NLM: 101759457
Informations de publication
Date de publication:
28 Apr 2022
28 Apr 2022
Historique:
received:
08
04
2021
accepted:
29
03
2022
entrez:
28
4
2022
pubmed:
29
4
2022
medline:
29
4
2022
Statut:
epublish
Résumé
Inter-population variation in host-associated microbiota reflects differences in the hosts' environments, but this characterization is typically based on studies comparing few populations. The diversity of natural habitats and captivity conditions occupied by any given host species has not been captured in these comparisons. Moreover, intraspecific variation in gut microbiota, generally attributed to diet, may also stem from differential acquisition of environmental microbes-an understudied mechanism by which host microbiomes are directly shaped by environmental microbes. To more comprehensively characterize gut microbiota in an ecologically flexible host, the ring-tailed lemur (Lemur catta; n = 209), while also investigating the role of environmental acquisition, we used 16S rRNA sequencing of lemur gut and soil microbiota sampled from up to 13 settings, eight in the wilderness of Madagascar and five in captivity in Madagascar or the U.S. Based on matched fecal and soil samples, we used microbial source tracking to examine covariation between the two types of consortia. The diversity of lemur gut microbes varied markedly within and between settings. Microbial diversity was not consistently greater in wild than in captive lemurs, indicating that this metric is not necessarily an indicator of host habitat or environmental condition. Variation in microbial composition was inconsistent both with a single, representative gut community for wild conspecifics and with a universal 'signal of captivity' that homogenizes the gut consortia of captive animals. Despite the similar, commercial diets of captive lemurs on both continents, lemur gut microbiomes within Madagascar were compositionally most similar, suggesting that non-dietary factors govern some of the variability. In particular, soil microbial communities varied across geographic locations, with the few samples from different continents being the most distinct, and there was significant and context-specific covariation between gut and soil microbiota. As one of the broadest, single-species investigations of primate microbiota, our study highlights that gut consortia are sensitive to multiple scales of environmental differences. This finding begs a reevaluation of the simple 'captive vs. wild' dichotomy. Beyond the important implications for animal care, health, and conservation, our finding that environmental acquisition may mediate aspects of host-associated consortia further expands the framework for how host-associated and environmental microbes interact across different microbial landscapes.
Sections du résumé
BACKGROUND
BACKGROUND
Inter-population variation in host-associated microbiota reflects differences in the hosts' environments, but this characterization is typically based on studies comparing few populations. The diversity of natural habitats and captivity conditions occupied by any given host species has not been captured in these comparisons. Moreover, intraspecific variation in gut microbiota, generally attributed to diet, may also stem from differential acquisition of environmental microbes-an understudied mechanism by which host microbiomes are directly shaped by environmental microbes. To more comprehensively characterize gut microbiota in an ecologically flexible host, the ring-tailed lemur (Lemur catta; n = 209), while also investigating the role of environmental acquisition, we used 16S rRNA sequencing of lemur gut and soil microbiota sampled from up to 13 settings, eight in the wilderness of Madagascar and five in captivity in Madagascar or the U.S. Based on matched fecal and soil samples, we used microbial source tracking to examine covariation between the two types of consortia.
RESULTS
RESULTS
The diversity of lemur gut microbes varied markedly within and between settings. Microbial diversity was not consistently greater in wild than in captive lemurs, indicating that this metric is not necessarily an indicator of host habitat or environmental condition. Variation in microbial composition was inconsistent both with a single, representative gut community for wild conspecifics and with a universal 'signal of captivity' that homogenizes the gut consortia of captive animals. Despite the similar, commercial diets of captive lemurs on both continents, lemur gut microbiomes within Madagascar were compositionally most similar, suggesting that non-dietary factors govern some of the variability. In particular, soil microbial communities varied across geographic locations, with the few samples from different continents being the most distinct, and there was significant and context-specific covariation between gut and soil microbiota.
CONCLUSIONS
CONCLUSIONS
As one of the broadest, single-species investigations of primate microbiota, our study highlights that gut consortia are sensitive to multiple scales of environmental differences. This finding begs a reevaluation of the simple 'captive vs. wild' dichotomy. Beyond the important implications for animal care, health, and conservation, our finding that environmental acquisition may mediate aspects of host-associated consortia further expands the framework for how host-associated and environmental microbes interact across different microbial landscapes.
Identifiants
pubmed: 35484581
doi: 10.1186/s42523-022-00176-x
pii: 10.1186/s42523-022-00176-x
pmc: PMC9052671
doi:
Types de publication
Journal Article
Langues
eng
Pagination
29Subventions
Organisme : National Science Foundation
ID : BCS 1749465
Informations de copyright
© 2022. The Author(s).
Références
Environ Microbiol. 2013 Apr;15(4):1132-45
pubmed: 23145888
Microb Ecol Health Dis. 2017 Jun 15;28(1):1335165
pubmed: 28740461
Appl Environ Microbiol. 2018 Aug 1;84(16):
pubmed: 29915104
ISME J. 2018 Oct;12(10):2506-2517
pubmed: 29942072
Science. 2014 Feb 21;343(6173):842-3
pubmed: 24558147
FEMS Microbiol Ecol. 2003 Nov 1;46(2):213-9
pubmed: 19719575
Environ Sci Technol. 2016 Sep 20;50(18):9807-15
pubmed: 27599587
PLoS Genet. 2022 May 23;18(5):e1010206
pubmed: 35604942
Nat Commun. 2019 May 16;10(1):2200
pubmed: 31097702
Expert Rev Anti Infect Ther. 2010 Apr;8(4):435-54
pubmed: 20377338
Appl Environ Microbiol. 2007 Jul;73(13):4308-16
pubmed: 17483286
PLoS One. 2019 Oct 24;14(10):e0223675
pubmed: 31648222
Nature. 2017 Nov 23;551(7681):457-463
pubmed: 29088705
Am J Primatol. 2016 Aug;78(8):883-92
pubmed: 27177345
Proc Biol Sci. 2020 Sep 9;287(1934):20200820
pubmed: 32873208
Am J Primatol. 2019 Oct;81(10-11):e22986
pubmed: 31081142
Microbiome. 2021 Jan 23;9(1):26
pubmed: 33485388
Nat Commun. 2019 Jun 20;10(1):2719
pubmed: 31222023
Sci Adv. 2020 Oct 14;6(42):
pubmed: 33055169
Front Microbiol. 2016 Aug 17;7:1269
pubmed: 27582734
Cell Host Microbe. 2017 May 10;21(5):561-567
pubmed: 28494237
Microb Ecol. 2021 Jul;82(1):215-223
pubmed: 33471174
ISME J. 2020 Jan;14(1):67-78
pubmed: 31495829
Sci Rep. 2019 May 28;9(1):7570
pubmed: 31138833
ISME J. 2012 Aug;6(8):1621-4
pubmed: 22402401
Appl Environ Microbiol. 2019 Apr 4;85(8):
pubmed: 30737344
Appl Environ Microbiol. 2003 Nov;69(11):6785-92
pubmed: 14602641
Environ Microbiol Rep. 2014 Apr;6(2):191-5
pubmed: 24596293
Anim Microbiome. 2021 Oct 1;3(1):65
pubmed: 34598739
Front Microbiol. 2017 Jul 13;8:1316
pubmed: 28751883
Animals (Basel). 2020 Nov 16;10(11):
pubmed: 33207622
Nat Microbiol. 2017 Aug 24;2:17121
pubmed: 28836573
FEMS Microbiol Ecol. 2020 Jun 1;96(6):
pubmed: 32401310
Proc Biol Sci. 2019 Jan 30;286(1895):20182448
pubmed: 30963956
Nat Rev Microbiol. 2017 Oct;15(10):579-590
pubmed: 28824177
Nature. 2012 May 09;486(7402):222-7
pubmed: 22699611
Nature. 2014 Jan 23;505(7484):559-63
pubmed: 24336217
mSystems. 2016 Aug 2;1(4):
pubmed: 27822543
Nat Methods. 2019 Jul;16(7):627-632
pubmed: 31182859
Nat Commun. 2018 May 3;9(1):1786
pubmed: 29725011
PLoS Biol. 2013;11(8):e1001631
pubmed: 23976878
Curr Opin Microbiol. 2019 Aug;50:8-14
pubmed: 31585390
Trends Microbiol. 2016 Aug;24(8):595-597
pubmed: 27397930
Mol Ecol. 2014 Jun;23(11):2783-96
pubmed: 24784171
Environ Int. 2020 Dec;145:106084
pubmed: 32977191
ISME J. 2014 Nov;8(11):2207-17
pubmed: 24858782
Elife. 2015 Mar 16;4:
pubmed: 25774601
Front Microbiol. 2020 Jan 21;10:3156
pubmed: 32038587
Front Microbiol. 2019 May 08;10:975
pubmed: 31139158
ISME J. 2020 Jun;14(6):1584-1599
pubmed: 32203121
Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6
pubmed: 23193283
Nat Rev Microbiol. 2014 Sep;12(9):635-45
pubmed: 25118885
Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10376-81
pubmed: 27573830
Am J Primatol. 2018 Jun;80(6):e22867
pubmed: 29862519
Nat Rev Genet. 2019 Apr;20(4):195-206
pubmed: 30622302
Trends Ecol Evol. 2010 Dec;25(12):713-21
pubmed: 20952089
Sci Rep. 2018 Jan 8;8(1):20
pubmed: 29311667
PLoS One. 2017 Jul 17;12(7):e0181427
pubmed: 28715471
ISME J. 2019 Mar;13(3):576-587
pubmed: 29995839
ISME J. 2020 Jul;14(7):1675-1687
pubmed: 32238913
Ecol Evol. 2017 Aug 17;7(19):7638-7649
pubmed: 29043021
Am J Primatol. 2019 Oct;81(10-11):e22974
pubmed: 30932230
PeerJ. 2019 Apr 30;7:e6844
pubmed: 31106061
mSystems. 2018 Jun 26;3(3):
pubmed: 29963641
Folia Primatol (Basel). 2019;90(4):199-214
pubmed: 31067551
Nature. 2018 Aug;560(7717):233-237
pubmed: 30069051
Mol Ecol. 2015 May;24(10):2521-36
pubmed: 25809385
Front Cell Infect Microbiol. 2015 Nov 20;5:84
pubmed: 26636046
mSystems. 2016 May 3;1(3):
pubmed: 27822526
Biol Lett. 2016 Jan;12(1):20150829
pubmed: 26814226
Proc Natl Acad Sci U S A. 2019 Nov 19;116(47):23588-23593
pubmed: 31685619
Front Microbiol. 2017 Oct 06;8:1935
pubmed: 29056933
ISME J. 2020 Sep;14(9):2223-2235
pubmed: 32444812
Appl Environ Microbiol. 2020 Nov 10;86(23):
pubmed: 32948523
Cell. 2014 Oct 9;159(2):253-66
pubmed: 25284151
Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7874-6
pubmed: 7644506
Sci Rep. 2018 Sep 27;8(1):14482
pubmed: 30262842
J Clin Microbiol. 1997 Nov;35(11):2826-33
pubmed: 9350742
Sci Rep. 2020 Nov 5;10(1):19107
pubmed: 33154444
BMC Vet Res. 2019 Jul 12;15(1):243
pubmed: 31300036
Integr Comp Biol. 2017 Oct 1;57(4):690-704
pubmed: 28985326
Am J Clin Nutr. 1991 Feb;53(2):448-56
pubmed: 1989412
Sci Rep. 2015 Nov 17;5:16350
pubmed: 26572876
Nat Ecol Evol. 2020 Aug;4(8):1020-1035
pubmed: 32572221
Sci Rep. 2017 Jul 12;7(1):5263
pubmed: 28701764
Front Microbiol. 2020 Sep 01;11:2096
pubmed: 32983063
Proc Biol Sci. 2019 Apr 24;286(1901):20190431
pubmed: 31014219
Conserv Physiol. 2014 Mar 21;2(1):cou009
pubmed: 27293630
Anim Microbiome. 2021 May 18;3(1):39
pubmed: 34006323
ISME J. 2013 Jul;7(7):1344-53
pubmed: 23486247
mSystems. 2020 May 26;5(3):
pubmed: 32457237
Sci Rep. 2012;2:615
pubmed: 22937224
mSystems. 2018 May 29;3(3):
pubmed: 29854953
Mol Ecol. 2015 Feb;24(3):690-7
pubmed: 25545295
Sci Rep. 2015 Oct 07;5:14862
pubmed: 26445280
Appl Environ Microbiol. 2002 Dec;68(12):5796-803
pubmed: 12450798
ISME J. 2019 Dec;13(12):2916-2926
pubmed: 31378786
Sci Rep. 2018 Nov 29;8(1):17456
pubmed: 30498246
Nat Clin Pract Gastroenterol Hepatol. 2006 May;3(5):275-84
pubmed: 16673007
NAR Genom Bioinform. 2020 Jun;2(2):lqaa023
pubmed: 32391521
Mol Ecol. 2013 Apr;22(7):1904-16
pubmed: 23398547
Behav Processes. 2007 Jan 10;74(1):88-92
pubmed: 17118574
Microbiome. 2017 Dec 21;5(1):163
pubmed: 29268780
Anim Behav. 2000 May;59(5):899-915
pubmed: 10860518
Sci Rep. 2018 Jul 24;8(1):11159
pubmed: 30042392
Curr Microbiol. 2015 Jan;70(1):67-74
pubmed: 25178631
Am J Primatol. 2019 Oct;81(10-11):e22989
pubmed: 31106872
Ecohealth. 2009 Dec;6(4):496-508
pubmed: 20232229
J Expo Sci Environ Epidemiol. 2020 Jan;30(1):1-15
pubmed: 31591493
ISME J. 2015 Nov;9(11):2515-26
pubmed: 25909977
Emerg Infect Dis. 2021 Mar;27(3):977-979
pubmed: 33624579
Science. 2022 Sep 16;377(6612):1328-1332
pubmed: 36108023
Curr Opin Gastroenterol. 2010 Nov;26(6):564-71
pubmed: 20871399
FEMS Microbiol Ecol. 2014 Mar;87(3):576-85
pubmed: 24289046
Emerg Infect Dis. 2007 Jan;13(1):6-11
pubmed: 17370509
Folia Primatol (Basel). 2015;86(1-2):85-95
pubmed: 26022304
Environ Microbiol Rep. 2017 Dec;9(6):750-755
pubmed: 28892304
Am J Primatol. 2019 Dec;81(12):e23061
pubmed: 31713260
Microbiome. 2015 Dec 21;3:76
pubmed: 26689946
Nature. 2018 Mar 8;555(7695):210-215
pubmed: 29489753
ISME J. 2019 May;13(5):1293-1305
pubmed: 30664674