Expression and clinical prognostic value of CYB561 in breast cancer.
Breast cancer
CYB561
ERBB2/HER2
Prognosis
Tumor-infiltrating lymphocyte
Journal
Journal of cancer research and clinical oncology
ISSN: 1432-1335
Titre abrégé: J Cancer Res Clin Oncol
Pays: Germany
ID NLM: 7902060
Informations de publication
Date de publication:
Aug 2022
Aug 2022
Historique:
received:
30
11
2021
accepted:
15
01
2022
pubmed:
30
4
2022
medline:
22
7
2022
entrez:
29
4
2022
Statut:
ppublish
Résumé
The expression of cytochrome B561 (CYB561) and its role in breast cancer (BC) prognosis remain unclear. We analyzed the differential expression and prognostic value of CYB561 using online databases and a clinical cohort through bioinformatics and immunohistochemistry. The differential expression of CYB561 and its association with BC were analyzed using the tumor immune estimation resource (TIMER), gene expression profiling interaction analysis2 (GEPIA2), Human Protein Atlas, Cancer Cell Line Encyclopedia, and Kaplan-Meier Plotter website. Important pathways of CYB561 enrichment were explored using gene set enrichment analysis. Immunohistochemistry detected CYB561 expression in normal breast, breast hyperplasia, ductal carcinoma in situ (DCIS), para-cancer, and invasive BC groups. Association between CYB561 expression and BC prognosis was analyzed using Kaplan-Meier and Cox regression analyses. CYB561 mRNA expression was higher in GEPIA and TIMER BC patients than in para-cancer tissues. CYB561 was expressed in the glandular epithelium and myoepithelium, with positive localization in the cytoplasm and cell membrane. CYB561 protein expression significantly differed among the groups. CYB561 expression was correlated with ERBB2/HER2 and infiltrating CD4+ T cells in GEPIA and TIMER BC patients and associated with HER2 status, histological grade, and molecular subtypes in the clinical cohort but not related to tumor-infiltrating lymphocytes. CYB561 mRNA overexpression predicted reduced recurrence-free survival and overall survival in BC. Patients with CYB561 expression had significantly reduced overall survival and increased risk of death. CYB561 can serve as an effective clinical prognostic biomarker for BC.
Identifiants
pubmed: 35486183
doi: 10.1007/s00432-022-03928-z
pii: 10.1007/s00432-022-03928-z
doi:
Substances chimiques
Biomarkers, Tumor
0
Cytochrome b Group
0
RNA, Messenger
0
cytochrome b561
11130-51-1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1879-1892Subventions
Organisme : Project of Basic Research for application of Science and Technology Department of Qinghai Province
ID : 2019-ZJ-7003
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Akatsuka S, Yamashita Y, Ohara H et al (2012) Fenton reaction induced cancer in wild type rats recapitulates genomic alterations observed in human cancer. PLoS One 7:e43403. https://doi.org/10.1371/journal.pone.0043403
doi: 10.1371/journal.pone.0043403
pubmed: 22952676
pmcid: 3430702
André F, Hurvitz S, Fasolo A et al (2016) Molecular alterations and everolimus efficacy in human epidermal growth factor receptor 2-overexpressing metastatic breast cancers: combined exploratory biomarker analysis from BOLERO-1 and BOLERO-3. J Clin Oncol 34:2115–2124. https://doi.org/10.1200/JCO.2015.63.9161
doi: 10.1200/JCO.2015.63.9161
pubmed: 27091708
Asard H, Barbaro R, Trost P et al (2013) Cytochromes b561: ascorbate-mediated trans-membrane electron transport. Antioxid Redox Signal 19:1026–1035. https://doi.org/10.1089/ars.2012.5065
doi: 10.1089/ars.2012.5065
pubmed: 23249217
pmcid: 3763232
Balmus G, Pilger D, Coates J et al (2019) ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks. Nat Commun 10:87. https://doi.org/10.1038/s41467-018-07729-2
doi: 10.1038/s41467-018-07729-2
pubmed: 30622252
pmcid: 6325118
Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492
doi: 10.3322/caac.21492
pubmed: 30207593
Crichton R (2016) Iron metabolism: from molecular mechanisms to clinical consequences, 4th edn. Wiley. https://doi.org/10.1002/9781118925645
doi: 10.1002/9781118925645
Dushyanthen S, Beavis PA, Savas P et al (2015) Relevance of tumor-infiltrating lymphocytes in breast cancer. BMC Med 13:202. https://doi.org/10.1186/s12916-015-0431-3
doi: 10.1186/s12916-015-0431-3
pubmed: 26300242
pmcid: 4547422
Engelman JA (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9:550–962. https://doi.org/10.1038/nrc2664
doi: 10.1038/nrc2664
pubmed: 19629070
Ghoncheh M, Mohammadian-Hafshejani A, Salehiniya H (2015) Incidence and mortality of breast cancer and their relationship to development in Asia. Asian Pac J Cancer Prev 16:6081–6087. https://doi.org/10.7314/apjcp.2015.16.14.6081
doi: 10.7314/apjcp.2015.16.14.6081
pubmed: 26320499
Gobbini E, Ezzalfani M, Dieras V et al (2018) Time trends of overall survival among metastatic breast cancer patients in the real-life ESME cohort. Eur J Cancer 96:17–24. https://doi.org/10.1016/j.ejca.2018.03.015
doi: 10.1016/j.ejca.2018.03.015
pubmed: 29660596
Huo D, Hu H, Rhie SK et al (2017) Comparison of breast cancer molecular features and survival by African and European ancestry in the cancer genome atlas. JAMA Oncol 3:1654–1662. https://doi.org/10.1001/jamaoncol.2017.0595
doi: 10.1001/jamaoncol.2017.0595
pubmed: 28472234
pmcid: 5671371
Latunde-Dada GO, Van der Westhuizen J, Vulpe CD et al (2002) Molecular and functional roles of duodenal cytochrome B (Dcytb) in iron metabolism. Blood Cells Mol Dis 29:356–360. https://doi.org/10.1006/bcmd.2002.0574
doi: 10.1006/bcmd.2002.0574
pubmed: 12547225
Lemler DJ, Lynch ML, Tesfay L et al (2017) DCYTB is a predictor of outcome in breast cancer that functions via iron-independent mechanisms. Breast Cancer Res 19:25. https://doi.org/10.1186/s13058-017-0814-9
doi: 10.1186/s13058-017-0814-9
pubmed: 28270217
pmcid: 5341190
Li TW, Fan JY, Wang BB et al (2017) TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Can Res 77:e108–e110. https://doi.org/10.1158/0008-5472.CAN-17-0307
doi: 10.1158/0008-5472.CAN-17-0307
Liang Y, Zhang H, Song X et al (2020) Metastatic heterogeneity of breast cancer: molecular mechanism and potential therapeutic targets. Semin Cancer Biol 60:14–27. https://doi.org/10.1016/j.semcancer.2019.08.012
doi: 10.1016/j.semcancer.2019.08.012
pubmed: 31421262
Mahmood SF, Gruel N, Chapeaublanc E et al (2014) A siRNA screen identifies RAD21, EIF3H, CHRAC1 and TANC2 as driver genes within the 8q23, 8q24.3 and 17q23 amplicons in breast cancer with effects on cell growth, survival and transformation. Carcinogenesis 35:670–682. https://doi.org/10.1093/carcin/bgt351
doi: 10.1093/carcin/bgt351
pubmed: 24148822
Ohtani S, Iwamaru A, Deng W et al (2007) Tumor suppressor 101F6 and ascorbate synergistically and selectively inhibit non-small cell lung cancer growth by caspase-independent apoptosis and autophagy. Cancer Res 67:6293–6303. https://doi.org/10.1158/0008-5472.CAN-06-3884
doi: 10.1158/0008-5472.CAN-06-3884
pubmed: 17616688
Olarte KCV, Bagamasbad PD (2020) SAT-132 the secretory vesicle membrane protein, CYB561, promotes the growth and metastatic potential of castration-resistant neuroendocrine prostate cancer. J Endocr Soc. https://doi.org/10.1210/jendso/bvaa046.1194
doi: 10.1210/jendso/bvaa046.1194
pmcid: 7208060
Polak ME, Thirdborough SM, Ung CY et al (2014) Distinct molecular signature of human skin langerhans cells denotes critical differences in cutaneous dendritic cell immune regulation. J Investig Dermatol 134:695–703. https://doi.org/10.1038/jid.2013.375
doi: 10.1038/jid.2013.375
pubmed: 24005050
Pruss RM, Shepard EA (1987) Cytochrome b561 can be detected in many neuroendocrine tissues using a specific monoclonal antibody. Neuroscience 22:149–157. https://doi.org/10.1016/0306-4522(87)90205-3
doi: 10.1016/0306-4522(87)90205-3
pubmed: 3306452
Raphael J, Gong IY, Nofech-Mozes S et al (2016) Tumour infiltrating lymphocytes and stromal CD68 in early stage HER2 positive breast cancer. J Clin Pathol 69:552–555. https://doi.org/10.1136/jclinpath-2015-203493
doi: 10.1136/jclinpath-2015-203493
pubmed: 26951081
Rimm DL, Camp RL, Charette LA et al (2001) Tissue microarray: a new technology for amplification of tissue resources. Cancer J 7:24–31
pubmed: 11269645
Salgado R, Denkert C, Demaria S et al (2015) International TILs working group 2014. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs working group 2014. Ann Oncol 26:259–271. https://doi.org/10.1093/annonc/mdu450
doi: 10.1093/annonc/mdu450
pubmed: 25214542
Simon RM, Paik S, Hayes DF (2009) Use of archived specimens in evaluation of prognostic and predictive biomarkers. J Natl Cancer Inst 101:1446–1452. https://doi.org/10.1093/jnci/djp335
doi: 10.1093/jnci/djp335
pubmed: 19815849
pmcid: 2782246
Srivastava M, Gibson KR, Pollard HB et al (1994) Human cytochrome b561: a revised hypothesis for conformation in membranes which reconciles sequence and functional information. Biochem J 303(Pt 3):915–921. https://doi.org/10.1042/bj3030915
doi: 10.1042/bj3030915
pubmed: 7980462
pmcid: 1137633
Sui S, An X, Xu C et al (2020) An immune cell infiltration-based immune score model predicts prognosis and chemotherapy effects in breast cancer. Theranostics 10:11938–11949. https://doi.org/10.7150/thno.49451
doi: 10.7150/thno.49451
pubmed: 33204321
pmcid: 7667685
Tang Z, Li C, Kang B et al (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45:W98-102. https://doi.org/10.1093/nar/gkx247
doi: 10.1093/nar/gkx247
pubmed: 28407145
pmcid: 5570223
Torre LA, Bray F, Siegel RL et al (2015) Global cancer statistics, 2012. Cancer J Clin 65:87–108. https://doi.org/10.3322/caac.21262
doi: 10.3322/caac.21262
van den Berg MP, Almomani R, Biaggioni I et al (2018) Mutations in CYB561 causing a novel orthostatic hypotension syndrome. Circ Res 122:846–854. https://doi.org/10.1161/CIRCRESAHA.117.311949
doi: 10.1161/CIRCRESAHA.117.311949
pubmed: 29343526
pmcid: 5924476
Willis S, Villalobos VM, Gevaert O et al (2016) Single gene prognostic biomarkers in ovarian cancer: a meta-analysis. PLoS One 11:e0149183. https://doi.org/10.1371/journal.pone.0149183
doi: 10.1371/journal.pone.0149183
pubmed: 26886260
pmcid: 4757072
Wyman S, Simpson RJ, McKie AT et al (2008) Dcytb (Cybrd1) functions as both a ferric and a cupric reductase in vitro. FEBS Lett 582:1901–1906. https://doi.org/10.1016/j.febslet.2008.05.010
doi: 10.1016/j.febslet.2008.05.010
pubmed: 18498772
Yardley DA, Tripathy D, Brufsky AM et al (2014) Long-term survivor characteristics in HER2-positive metastatic breast cancer from regist HER. Br J Cancer 110:2756–2764. https://doi.org/10.1038/bjc.2014.174
doi: 10.1038/bjc.2014.174
pubmed: 24743708
pmcid: 4037822
Zeng H, Zheng R, Guo Y et al (2015) Cancer survival in China, 2003–2005: a population based study. Int J Cancer 136:1921–1930. https://doi.org/10.1002/ijc.29227
doi: 10.1002/ijc.29227
pubmed: 25242378