The PV2 cluster of parvalbumin neurons in the murine periaqueductal gray: connections and gene expression.
Allen database
Autonomic nervous system
Hypothalamus
Inhibition
Orbitofrontal cortex
Su3
Journal
Brain structure & function
ISSN: 1863-2661
Titre abrégé: Brain Struct Funct
Pays: Germany
ID NLM: 101282001
Informations de publication
Date de publication:
Jul 2022
Jul 2022
Historique:
received:
02
03
2021
accepted:
03
04
2022
pubmed:
30
4
2022
medline:
29
6
2022
entrez:
29
4
2022
Statut:
ppublish
Résumé
The PV2 (Celio 1990), a cluster of parvalbumin-positive neurons located in the ventromedial region of the distal periaqueductal gray (PAG) has not been previously described as its own entity, leading us to study its extent, connections, and gene expression. It is an oval, bilateral, elongated cluster composed of approximately 475 parvalbumin-expressing neurons in a single mouse hemisphere. In its anterior portion it impinges upon the paratrochlear nucleus (Par4) and in its distal portion it is harbored in the posterodorsal raphe nucleus (PDR). It is known to receive inputs from the orbitofrontal cortex and from the parvafox nucleus in the ventrolateral hypothalamus. Using anterograde tracing methods in parvalbumin-Cre mice, the main projections of the PV2 cluster innervate the supraoculomotor periaqueductal gray (Su3) of the PAG, the parvafox nucleus of the lateral hypothalamus, the gemini nuclei of the posterior hypothalamus, the septal regions, and the diagonal band in the forebrain, as well as various nuclei within the reticular formation in the midbrain and brainstem. Within the brainstem, projections were discrete, but involved areas implicated in autonomic control. The PV2 cluster expressed various peptides and receptors, including the receptor for Adcyap1, a peptide secreted by one of its main afferences, namely, the parvafox nucleus. The expression of GAD1 and GAD2 in the region of the PV2, the presence of Vgat-1 in a subpopulation of PV2-neurons as well as the coexistence of GAD67 immunoreactivity with parvalbumin in terminal endings indicates the inhibitory nature of a subpopulation of PV2-neurons. The PV2 cluster may be part of a feedback controlling the activity of the hypothalamic parvafox and the Su3 nuclei in the periaqueductal gray.
Identifiants
pubmed: 35486186
doi: 10.1007/s00429-022-02491-0
pii: 10.1007/s00429-022-02491-0
pmc: PMC9232479
doi:
Substances chimiques
Parvalbumins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2049-2072Subventions
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
ID : 31003A_160325
Informations de copyright
© 2022. The Author(s).
Références
Alvarez-Bolado G, Celio MR (2016) The ventrolateral hypothalamic area and the parvafox nucleus: role in the expression of (positive) emotions? J Comp Neurol 524(8):1616–1623. https://doi.org/10.1002/cne.23853
doi: 10.1002/cne.23853
pubmed: 26179507
Babalian A, Eichenberger S, Bilella A, Szabolcsi V, Alvarez-Bolado G, Chun X, Celio MR (2019) The orbitofrontal cortex projects to the parvafoxnucleus of the ventrolateral hypothalamus and to its targets in the ventral periaqueductal gray matter in preparation. Brain Struct Funct 224:293–314
doi: 10.1007/s00429-018-1771-5
Bandler R, Carrive P (1988) Integrated defence reaction elicited by excitatory amino acid microinjection in the midbrain periaqueductal gray region of the unrestrained cat. Brain Res 439(1–2):95–106
doi: 10.1016/0006-8993(88)91465-5
Bandler R, Shipley MT (1994) Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci 17(9):379–389
doi: 10.1016/0166-2236(94)90047-7
Bandler R, Carrive P, Zhang MR (1991) Integration of somatic and autonomic reactions within the midbrain periaqueductal gray: viscerotopic, somatotopic and functional organization. Prog Brain Res 87:269–305
doi: 10.1016/S0079-6123(08)63056-3
Bandler R, Keay KA, Floyd N, Price J (2000) Central circuits mediating patterned autonomic activity during active vs. passive emotional coping. Brain Res Bull 53(1):95–104
doi: 10.1016/S0361-9230(00)00313-0
Behbehani MM (1995) Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol 46(6):575–605. https://doi.org/10.1016/0301-0082(95)00009-k
doi: 10.1016/0301-0082(95)00009-k
pubmed: 8545545
Bilella A, Alvarez-Bolado G, Celio MR (2014) Coaxiality of Foxb1- and parvalbumin-expressing neurons in the lateral hypothalamic PV1-nucleus. Neurosci Lett 566:111–114. https://doi.org/10.1016/j.neulet.2014.02.028
doi: 10.1016/j.neulet.2014.02.028
pubmed: 24576653
Bilella A, Alvarez-Bolado G, Celio MR (2016) The Foxb1-expressing neurons of the ventrolateral hypothalamic parvafox nucleus project to defensive circuits. J Comp Neurol 524(15):2955–2981. https://doi.org/10.1002/cne.24057
doi: 10.1002/cne.24057
pubmed: 27292133
Burgdorf J, Wood PL, Kroes RA, Moskal JR, Panksepp J (2007) Neurobiology of 50-kHz ultrasonic vocalizations in rats: electrode mapping, lesion, and pharmacology studies. Behav Brain Res 182:274–283
doi: 10.1016/j.bbr.2007.03.010
Cameron AA, Khan IA, Westlund KN, Willis WD (1995) The efferent projections of the periaqueductal gray in the rat: a phaseolus vulgaris-leucoagglutinin study II descending projections. J Comp Neurol 351(4):585–601. https://doi.org/10.1002/cne.903510408
doi: 10.1002/cne.903510408
pubmed: 7721985
Carrive P, Paxinos G (1994) The supraoculomotor cap: a region revealed by NADPH diaphorase histochemistry. NeuroReport 5(17):2257–2260
doi: 10.1097/00001756-199411000-00013
Carrive P, Dampney RA, Bandler R (1987) Excitation of neurones in a restricted portion of the midbrain periaqueductal gray elicits both behavioural and cardiovascular components of the defence reaction in the unanesthetised decerebrate cat. Neurosci Lett 81:273–278
doi: 10.1016/0304-3940(87)90395-8
Carrive P, Bandler R, Dampney RA (1989) Somatic and autonomic integration in the midbrain of the unanesthetized decerebrate cat: a distinctive pattern evoked by excitation of neurones in the subtentorial portion of the midbrain periaqueductal gray. Brain Res 483(2):251–258
doi: 10.1016/0006-8993(89)90169-8
Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35(2):375–475
doi: 10.1016/0306-4522(90)90091-H
Celio MR, Babalian A, Ha QH, Eichenberger S, Clement L, Marti C, Saper CB (2013) Efferent connections of the parvalbumin-positive (PV1) nucleus in the lateral hypothalamus of rodents. J Comp Neurol 521(14):3133–3153. https://doi.org/10.1002/cne.23344
doi: 10.1002/cne.23344
pubmed: 23787784
pmcid: 3772778
Chen S, Aston-Jones G (1996) Extensive projections from the midbrain periaqueductal gray to the caudal ventrolateral medulla: a retrograde and anterograde tracing study in the rat. Neuroscience 71(2):443–459
doi: 10.1016/0306-4522(95)00437-8
Cola RB, Babalian A, Alvarez-Bolado G, Celio MR (2020) Involvement of the lateral hypothalamic Parvafox-Foxb1 neurons in defensive behaviors. Abstract Theme F.2.e : Neuronal control of organ function. XII FENS Meeting, Glasgow 11–15 July
Comoli E, Das Neves Favaro P, Vautrelle N, Leriche M, Overton PG, Redgrave P (2012) Segregated anatomical input to sub-regions of the rodent superior colliculus associated with approach and defense. Front Neuroanat 6:9. https://doi.org/10.3389/fnana.2012.00009
doi: 10.3389/fnana.2012.00009
pubmed: 22514521
pmcid: 3324116
Davis FP, Eddy SR (2009) A tool for identification of genes expressed in patterns of interest using the allen brain atlas. Bioinformatics 25(13):1647–1654. https://doi.org/10.1093/bioinformatics/btp288
doi: 10.1093/bioinformatics/btp288
pubmed: 19414530
pmcid: 2940243
Depaulis A, Keay KA, Bandler R (1992) Longitudinal neuronal organization of defensive reactions in the midbrain periaqueductal gray region of the rat. Exp Brain Res 90(2):307–318
doi: 10.1007/BF00227243
Depaulis A, Keay KA, Bandler R (1994) Quiescence and hyporeactivity evoked by activation of cell bodies in the ventrolateral midbrain periaqueductal gray of the rat. Exp Brain Res 99(1):75–83
doi: 10.1007/BF00241413
Depaulis A, Bandler R. (1991) The midbrain periaqueductal matter. Functional, anatomical and neurochemical organization, vol 213. NATO ASI Series, vol A. Plenum Press, New York and London
Ennis M, Xu SJ, Rizvi TA (1997) Discrete subregions of the rat midbrain periaqueductal gray project to nucleus ambiguus and the periambigual region. Neuroscience 80(3):829–845
doi: 10.1016/S0306-4522(97)00051-1
Felten DL. (2016) Motor systems: central control of respiration. In: Netter’s atlas of neuroscience (3rd Edition)
Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates. Elsevier, Amsterdam
Furigo IC, de Oliveira WF, de Oliveira AR, Comoli E, Baldo MV, Mota-Ortiz SR, Canteras NS (2010) The role of the superior colliculus in predatory hunting. Neuroscience 165(1):1–15. https://doi.org/10.1016/j.neuroscience.2009.10.004
doi: 10.1016/j.neuroscience.2009.10.004
pubmed: 19825395
Gerig AT, Celio MR (2007) The human lateral tuberal nucleus: immunohistochemical characterization and analogy to the rodent PV1-nucleus. Brain Res 1139:110–116. https://doi.org/10.1016/j.brainres.2006.12.093
doi: 10.1016/j.brainres.2006.12.093
pubmed: 17292870
Girard F, Meszar Z, Marti C, Davis FP, Celio M (2011) Gene expression analysis in the parvalbumin-immunoreactive PV1 nucleus of the mouse lateral hypothalamus. Eur J Neurosci 34(12):1934–1943. https://doi.org/10.1111/j.1460-9568.2011.07918.x
doi: 10.1111/j.1460-9568.2011.07918.x
pubmed: 22128821
Henderson LA, Keay KA, Bandler R (1998) The ventrolateral periaqueductal gray projects to caudal brainstem depressor regions: a functional-anatomical and physiological study. Neuroscience 82(1):201–221
doi: 10.1016/S0306-4522(97)00267-4
Hess WR (1935) Hypothalamus und die Zentren des autonomen Nervensystems: Physiologie. Paper presented at the Neurokongress, London
Hippenmeyer S, Vrieseling E, Sigrist M, Portmann T, Laengle C, Ladle DR, Arber S (2005) A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol 3(5):e159. https://doi.org/10.1371/journal.pbio.0030159
doi: 10.1371/journal.pbio.0030159
pubmed: 15836427
pmcid: 1084331
Jänig W (2006) Nucleus tractus solitarii. In: Jänig W (ed) Integrative action of the autonomic nervous system. Cambridge University Press, pp 311–317
Kalia M, Mesulam MM (1980) Brain stem projections of sensory and motor components of the vagus complex in the cat: II Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches. J Comp Neurol 193(2):467–508. https://doi.org/10.1002/cne.901930211
doi: 10.1002/cne.901930211
pubmed: 7440778
Keay KA, Crowfoot LJ, Floyd NS, Henderson LA, Christie MJ, Bandler R (1997a) Cardiovascular effects of microinjections of opioid agonists into the ‘Depressor region’ of the ventrolateral periaqueductal gray region. Brain Res 762(1–2):61–71. https://doi.org/10.1016/S0006-8993(97)00285-0
doi: 10.1016/S0006-8993(97)00285-0
pubmed: 9262159
König JFR, Klippel RA (1963) The rat brain. A Stereotaxic Atlas. William & Wilkins Co, Baltimore
Keay KA, Crowfoot LJ, Floyd NS, Henderson LA, Christie MJ, Bandler R (1997b) Cardiovascular effects of microinjections of opioid agonists into the ‘Depressor region’ of the ventrolateral periaqueductal gray region. Brain Res 762(1–2):61–71. https://doi.org/10.1016/s0006-8993(97)00285-0
doi: 10.1016/s0006-8993(97)00285-0
pubmed: 9262159
Loewy AD (1990) Central autonomic pathways. In: Loewy AD, Spyer KM (eds) Central regulation of autonomic functions. New York, USA, Oxford, pp 88–103
Meller ST, Dennis BJ (1986) Afferent projections to the periaqueductal gray in the rabbit. Neuroscience 19(3):927–964. https://doi.org/10.1016/0306-4522(86)90308-8
doi: 10.1016/0306-4522(86)90308-8
pubmed: 3796822
Meszar Z, Girard F, Saper CB, Celio MR (2012) The lateral hypothalamic parvalbumin-immunoreactive (PV1) nucleus in rodents. J Comp Neurol 520(4):798–815. https://doi.org/10.1002/cne.22789
doi: 10.1002/cne.22789
pubmed: 22020694
pmcid: 3523738
Panksepp J, Burgdorf J (2003) “Laughing” rats and the evolutionary antecedents of human joy? Physiol Behav 79:533–547
doi: 10.1016/S0031-9384(03)00159-8
Price JL, Slotnick BM, Revial MF (1991) Olfactory projections to the hypothalamus. J Comp Neurol 306(3):447–461. https://doi.org/10.1002/cne.903060309
doi: 10.1002/cne.903060309
pubmed: 1713925
Roccaro-Waldmeyer DM, Babalian A, Muller A, Celio MR (2016) Reduction in 50-kHz call-numbers and suppression of tickling-associated positive affective behaviour after lesioning of the lateral hypothalamic parvafox nucleus in rats. Behav Brain Res 298(Pt B):167–180. https://doi.org/10.1016/j.bbr.2015.11.004
doi: 10.1016/j.bbr.2015.11.004
pubmed: 26554726
Ross CA, Ruggiero DA, Reis DJ (1985) Projections from the nucleus tractus solitarii to the rostral ventrolateral medulla. J Comp Neurol 242(4):511–534. https://doi.org/10.1002/cne.902420405
doi: 10.1002/cne.902420405
pubmed: 2418079
Saper CB, Loewy AD (1980) Efferent connections of the parabrachial nucleus in the rat. Brain Res 197(2):291–317
doi: 10.1016/0006-8993(80)91117-8
Saper CB, Loewy AD, Swanson LW (2016) Commentary on: Saper CB, Loewy AD, Swanson LW, Cowan WM. (1976) direct hypothalamo-autonomic connections. brain research 117:305–312. Brain Res 1645:12–14. https://doi.org/10.1016/j.brainres.2016.01.010
doi: 10.1016/j.brainres.2016.01.010
pubmed: 26944298
Sessle BJ, Ball GJ, Lucier GE (1981) Suppressive influences from periaqueductal gray and nucleus raphe magnus on respiration and related reflex activities and on solitary tract neurons, and eVect of naloxone. Brain Res 216:145–161
doi: 10.1016/0006-8993(81)91283-X
Shipley MT, Ennis M, Rizvi TA, Behbehani MM (1991) Topographicalspecificity of forebrain inputs to the midbrain periaqueductal gray: evidence for discrete longitudinally organized input columns. In: Depaulis A, Bandler R (eds) The midbrain periaqueductal gray matter. Plenum Press, New York and London, pp 417–448
doi: 10.1007/978-1-4615-3302-3_22
Siemian JN, Borja CB, Sarsfield S, Kisner A, Aponte Y (2019) Lateral hypothalamic fast-spiking parvalbumin neurons modulate nociception through connections in the periaqueductal gray area. Sci Rep 9(1):12026. https://doi.org/10.1038/s41598-019-48537-y
doi: 10.1038/s41598-019-48537-y
pubmed: 31427712
pmcid: 6700312
Spencer SE, Sawyer WB, Loewy AD (1989) Cardiovascular effects produced by L-glutamate stimulation of the lateral hypothalamic area. Am J Physiol 257(2 Pt 2):H540-552
pubmed: 2569838
Subramanian HH, Holstege G (2009) The nucleus retroambiguus control of respiration. J Neurosci 29(12):3824–3832. https://doi.org/10.1523/JNEUROSCI.0607-09.2009
doi: 10.1523/JNEUROSCI.0607-09.2009
pubmed: 19321779
pmcid: 6665025
Subramanian HH, Balnave RJ, Holstege G (2008) The midbrain periaqueductal gray control of respiration. J Neurosci 28(47):12274–12283. https://doi.org/10.1523/JNEUROSCI.4168-08.2008
doi: 10.1523/JNEUROSCI.4168-08.2008
pubmed: 19020021
pmcid: 6671706
Swanson LW (2004) Brain maps: the structure of the rat brain. Elsevier Academic Press, San Diego
Szabolcsi V, Albisetti GW, Celio MR (2017) Parvalbumin-neurons of the ventrolateral hypothalamic parvafox nucleus receive a glycinergic input: a gene-microarray study. Front Mol Neurosci 10:8. https://doi.org/10.3389/fnmol.2017.00008
doi: 10.3389/fnmol.2017.00008
pubmed: 28167900
pmcid: 5253383
Van Bockstaele EJ, Aston-Jones G (1992) Distinct populations of neurons in the ventromedial periaqueductal gray project to the rostral ventral medulla and abducens nucleus. Brain Res 576(1):59–67
doi: 10.1016/0006-8993(92)90609-D
Van Bockstaele EJ, Pieribone VA, Aston-Jones G (1989) Diverse afferents converge on the nucleus paragigantocellularis in the rat ventrolateral medulla: retrograde and anterograde tracing studies. J Comp Neurol 290(4):561–584. https://doi.org/10.1002/cne.902900410
doi: 10.1002/cne.902900410
pubmed: 2482306
Van Bockstaele EJ, Aston-Jones G, Pieribone VA, Ennis M, Shipley MT (1991) Subregions of the periaqueductal gray topographically innervate the rostral ventral medulla in the rat. J Comp Neurol 309(3):305–327. https://doi.org/10.1002/cne.903090303
doi: 10.1002/cne.903090303
pubmed: 1717516
Verberne AJ, Guyenet PG (1992) Midbrain central gray: influence on medullary sympathoexcitatory neurons and the baroreflex in rats. Am J Physiol 263(1 Pt 2):R24-33. https://doi.org/10.1152/ajpregu.1992.263.1.R24
doi: 10.1152/ajpregu.1992.263.1.R24
pubmed: 1636792
Verberne AJ, Struyker Boudier HA (1991) Midbrain central gray: regional haemodynamic control and excitatory amino acidergic mechanisms. Brain Res 550(1):86–94
doi: 10.1016/0006-8993(91)90408-N
Ward DG, Darlington DN (1987a) A blood pressure lowering effect of lesions of the caudal periaqueductal gray: relationship to basal pressure. Brain Res 423(1–2):373–377
doi: 10.1016/0006-8993(87)90866-3
Ward DG, Darlington DN (1987b) Lesions of the caudal periaqueductal gray prevent compensation of arterial pressure during hemorrhage. Brain Res 407(2):369–375
doi: 10.1016/0006-8993(87)91116-4
Yajima Y, Hayashi Y, Yoshii N (1980) The midbrain central gray substance as a highly sensitive neural structure for the production of ultrasonic vocalization in the rat. Brain Res 198:446–452
doi: 10.1016/0006-8993(80)90759-3
Zhang SP, Bandler R, Carrive P (1990) Flight and immobility evoked by excitatory amino acid microinjection within distinct parts of the subtentorial midbrain periaqueductal gray of the cat. Brain Res 520:73–82
doi: 10.1016/0006-8993(90)91692-A