Flow Cytometric Characterization of Pluripotent Cell Protein Markers in Naïve, Formative, and Primed Pluripotent Stem Cells.
Embryonic stem cells
Flow cytometry
Formative pluripotency
Naïve pluripotency
Pluripotent stem cells
Primed pluripotency
mEpiSC
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2022
2022
Historique:
entrez:
29
4
2022
pubmed:
30
4
2022
medline:
4
5
2022
Statut:
ppublish
Résumé
Here we describe methodologies to characterize, delineate, and quantify pluripotent cells between naïve, formative, and primed pluripotent state mouse embryonic stem cell (mESCs) populations using flow cytometric analysis. This methodology can validate pluripotent states, sort individual cells of interest, and determine the efficiency of transitioning naïve mESCs to a primed-like state as mouse epiblast-like cells (mEpiLCs) and onto fully primed mouse epiblast stem cells (mEpiSCs). Quantification of the cell surface markers; SSEA1(CD15) and CD24 introduces an effective method of distinguishing individual cells from a population by their respective positioning in the pluripotent spectrum. Additionally, this protocol can be used to demarcate and sort cells via fluorescently activated cell sorting for downstream applications. Flow cytometric analysis within mESCs, mEpiLCs, and mEpiSCs can be efficiently completed using these optimized protocols.
Identifiants
pubmed: 35486241
doi: 10.1007/978-1-0716-2281-0_8
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
81-92Subventions
Organisme : CIHR
Pays : Canada
Informations de copyright
© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Leif RC (1986) Practical flow cytometry. Cytometry 7:111–112. https://doi.org/10.1002/cyto.990070119
doi: 10.1002/cyto.990070119
Morgani S, Nichols J, Hadjantonakis A-K (2017) The many faces of pluripotency: in vitro adaptations of a continuum of in vivo states. BMC Dev Biol 17:7. https://doi.org/10.1186/s12861-017-0150-4
doi: 10.1186/s12861-017-0150-4
pubmed: 28610558
pmcid: 5470286
Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146:519–532. https://doi.org/10.1016/j.cell.2011.06.052
doi: 10.1016/j.cell.2011.06.052
pubmed: 21820164
Solter D, Knowles BB (1978) Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci U S A 75:5565–5569. https://doi.org/10.1073/pnas.75.11.5565
doi: 10.1073/pnas.75.11.5565
pubmed: 281705
pmcid: 393007
Shakiba N, White CA, Lipsitz YY, Yachie-Kinoshita A, Tonge PD, Hussein SMI, Puri MC, Elbaz J, Morrissey-Scoot J, Li M, Munoz J, Benevento M, Rogers IM, Hanna JH, Heck AJR, Wollscheid B, Nagy A, Zandstra PW (2015) CD24 tracks divergent pluripotent states in mouse and human cells. Nat Commun 6:7329. https://doi.org/10.1038/ncomms8329
doi: 10.1038/ncomms8329
pubmed: 26076835
Hahne F, Khodabakhshi AH, Bashashati A, Wong C-J, Gascoyne RD, Weng AP, Seyfert-Margolis V, Bourcier K, Asare A, Lumley T, Gentleman R, Brinkman RR (2010) Per-channel basis normalization methods for flow cytometry data. Cytometry A 77A:121–131. https://doi.org/10.1002/cyto.a.20823
doi: 10.1002/cyto.a.20823
Herzenberg LA, Tung J, Moore WA, Herzenberg LA, Parks DR (2006) Interpreting flow cytometry data: a guide for the perplexed. Nat Immunol 7:681–685. https://doi.org/10.1038/ni0706-681
doi: 10.1038/ni0706-681
pubmed: 16785881
Strober W (1997) Trypan blue exclusion test of cell viability. Curr Protoc Immunol 21:A.3B.1–A.3B.2. https://doi.org/10.1002/0471142735.ima03bs21
doi: 10.1002/0471142735.ima03bs21
Kinoshita M, Barber M, Mansfield W, Cui Y, Dietmann S, Nichols J, Smith A (2021) Capture of mouse and human stem cells with features of formative pluripotency. Cell Stem Cell 28(3):453–471.e8
doi: 10.1016/j.stem.2020.11.005
Vidal SE, Stadtfeld M, Apostolou E (2015) F-class cells: new routes and destinations for induced pluripotency. Cell Stem Cell 16:9–10. https://doi.org/10.1016/j.stem.2014.12.007
doi: 10.1016/j.stem.2014.12.007
pubmed: 25575077
Ware CB, Nelson AM, Mecham B, Hesson J, Zhou W, Jonlin EC, Jimenez-Caliani AJ, Deng X, Cavanaugh C, Cook S, Tesar PJ, Okada J, Margaretha L, Sperber H, Choi M, Blau CA, Treuting PM, Hawkins RD, Cirulli V, Ruohola-Baker H (2014) Derivation of naive human embryonic stem cells. Proc Natl Acad Sci U S A 111:4484–4489. https://doi.org/10.1073/pnas.1319738111
doi: 10.1073/pnas.1319738111
pubmed: 24623855
pmcid: 3970494
Giulitti S, Pellegrini M, Zorzan I, Martini P, Gagliano O, Mutarelli M, Ziller MJ, Cacchiarelli D, Romualdi C, Elvassore N, Martello G (2019) Direct generation of human naive induced pluripotent stem cells from somatic cells in microfluidics. Nat Cell Biol 21:275–286. https://doi.org/10.1038/s41556-018-0254-5
doi: 10.1038/s41556-018-0254-5
pubmed: 30598530