OLFM4 deficiency delays the progression of colitis to colorectal cancer by abrogating PMN-MDSCs recruitment.
Journal
Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562
Informations de publication
Date de publication:
05 2022
05 2022
Historique:
received:
30
11
2021
accepted:
13
04
2022
revised:
13
04
2022
pubmed:
30
4
2022
medline:
31
5
2022
entrez:
29
4
2022
Statut:
ppublish
Résumé
Chronic inflammatory bowel disease (IBD) is strongly associated with the development of colitis-associated tumorigenesis (CAT). Despite recent advances in the understanding of polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) responses in cancer, the mechanisms of these cells during this process remain largely uncharacterized. Here, we discovered a glycoprotein, olfactomedin-4 (OLFM4), was highly expressed in PMN-MDSCs from colitis to colorectal cancer (CRC), and its expression level and PMN-MDSC population positively correlated with the progression of IBD to CRC. Moreover, mice lacking OLFM4 in myeloid cells showed poor recruitment of PMN-MDSCs, impaired intestinal homeostasis, and delayed development from IBD to CRC, and increased response to anti-PD1 therapy. The main mechanism of OLFM4-mediated PMN-MDSC activity involved the NF-κB/PTGS2 pathway, through the binding of LGALS3, a galactoside-binding protein expressed on PMN-MDSCs. Our results showed that the OLFM4/NF-κB/PTGS2 pathway promoted PMN-MDSC recruitment, which played an essential role in the maintenance of intestinal homeostasis, but showed resistance to anti-PD1 therapy in CRC.
Identifiants
pubmed: 35487976
doi: 10.1038/s41388-022-02324-8
pii: 10.1038/s41388-022-02324-8
doi:
Substances chimiques
Glycoproteins
0
NF-kappa B
0
OLFM4 protein, human
0
olfactomedin 4, mouse
0
Granulocyte Colony-Stimulating Factor
143011-72-7
Cyclooxygenase 2
EC 1.14.99.1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3131-3150Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Benson AB, Venook AP, Al-Hawary MM, Cederquist L, Chen YJ, Ciombor KK, et al. NCCN guidelines insights: colon cancer, version 2.2018. J Natl Compr Canc Netw. 2018;16:359–69.
pubmed: 29632055
doi: 10.6004/jnccn.2018.0021
Messersmith WA. NCCN guidelines updates: management of metastatic colorectal cancer. J Natl Compr Canc Netw. 2019;17:599–601.
pubmed: 31117039
Vuik FE, Nieuwenburg SA, Bardou M, Lansdorp-Vogelaar I, Dinis-Ribeiro M, Bento MJ, et al. Increasing incidence of colorectal cancer in young adults in Europe over the last 25 years. Gut 2019;68:1820–6.
pubmed: 31097539
doi: 10.1136/gutjnl-2018-317592
Liao W, Overman MJ, Boutin AT, Shang X, Zhao D, Dey P, et al. KRAS-IRF2 axis drives immune suppression and immune therapy resistance in colorectal cancer. Cancer Cell. 2019;35:559–72 e7.
pubmed: 30905761
pmcid: 6467776
doi: 10.1016/j.ccell.2019.02.008
Kajino-Sakamoto R, Fujishita T, Taketo MM, Aoki M. Synthetic lethality between MyD88 loss and mutations in Wnt/beta-catenin pathway in intestinal tumor epithelial cells. Oncogene 2021;40:408–20.
pubmed: 33177648
doi: 10.1038/s41388-020-01541-3
Tao Y, Liu Z, Hou Y, Wang S, Liu S, Jiang Y, et al. Alternative NF-kappaB signaling promotes colorectal tumorigenesis through transcriptionally upregulating Bcl-3. Oncogene 2018;37:5887–900.
pubmed: 29973688
doi: 10.1038/s41388-018-0363-4
Wang Y, Ding Y, Deng Y, Zheng Y, Wang S. Role of myeloid-derived suppressor cells in the promotion and immunotherapy of colitis-associated cancer. J Immunother Cancer. 2020;8:e000609.
pubmed: 33051339
pmcid: 7555106
doi: 10.1136/jitc-2020-000609
Berg KCG, Sveen A, Holand M, Alagaratnam S, Berg M, Danielsen SA, et al. Gene expression profiles of CMS2-epithelial/canonical colorectal cancers are largely driven by DNA copy number gains. Oncogene 2019;38:6109–22.
pubmed: 31308487
pmcid: 6756070
doi: 10.1038/s41388-019-0868-5
Piovani D, Danese S, Peyrin-Biroulet L, Nikolopoulos GK, Lytras T, Bonovas S. Environmental risk factors for inflammatory bowel diseases: an umbrella review of meta-analyses. Gastroenterology 2019;157:647–59 e4.
pubmed: 31014995
doi: 10.1053/j.gastro.2019.04.016
Glassner KL, Abraham BP, Quigley EMM. The microbiome and inflammatory bowel disease. J Allergy Clin Immunol. 2020;145:16–27.
pubmed: 31910984
doi: 10.1016/j.jaci.2019.11.003
d’Aldebert E, Quaranta M, Sebert M, Bonnet D, Kirzin S, Portier G, et al. Characterization of human colon organoids from inflammatory bowel disease patients. Front Cell Dev Biol. 2020;8:363.
pubmed: 32582690
pmcid: 7287042
doi: 10.3389/fcell.2020.00363
Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl J Med. 2019;381:1535–46.
pubmed: 31562797
doi: 10.1056/NEJMoa1910836
El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017;389:2492–502.
pubmed: 28434648
pmcid: 7539326
doi: 10.1016/S0140-6736(17)31046-2
Kim ST, Cristescu R, Bass AJ, Kim KM, Odegaard JI, Kim K, et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med. 2018;24:1449–58.
pubmed: 30013197
doi: 10.1038/s41591-018-0101-z
Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science 2018;359:1350–5.
pubmed: 29567705
pmcid: 7391259
doi: 10.1126/science.aar4060
Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 2018;36:773–9.
pubmed: 29355075
doi: 10.1200/JCO.2017.76.9901
Keenan TE, Tolaney SM. Role of immunotherapy in triple-negative breast cancer. J Natl Compr Canc Netw. 2020;18:479–89.
pubmed: 32259782
doi: 10.6004/jnccn.2020.7554
Chen B, Dragomir MP, Fabris L, Bayraktar R, Knutsen E, Liu X, et al. The long noncoding RNA CCAT2 induces chromosomal instability through BOP1-AURKB signaling. Gastroenterology 2020;159:2146–62 e33.
pubmed: 32805281
doi: 10.1053/j.gastro.2020.08.018
Lv J, Jia Y, Li J, Kuai W, Li Y, Guo F, et al. Gegen Qinlian decoction enhances the effect of PD-1 blockade in colorectal cancer with microsatellite stability by remodelling the gut microbiota and the tumour microenvironment. Cell Death Dis. 2019;10:415.
pubmed: 31138779
pmcid: 6538740
doi: 10.1038/s41419-019-1638-6
Wang L, Hui H, Agrawal K, Kang Y, Li N, Tang R, et al. m(6) A RNA methyltransferases METTL3/14 regulate immune responses to anti-PD-1 therapy. EMBO J. 2020;39:e104514.
pubmed: 32964498
pmcid: 7560214
Galluzzi L, Chan TA, Kroemer G, Wolchok JD, Lopez-Soto A. The hallmarks of successful anticancer immunotherapy. Sci Transl Med. 2018;10:948–63.
doi: 10.1126/scitranslmed.aat7807
Kim HJ, Cantor H, Cosmopoulos K. Overcoming immune checkpoint blockade resistance via EZH2 inhibition. Trends Immunol. 2020;41:948–63.
pubmed: 32976740
doi: 10.1016/j.it.2020.08.010
Chen L, Jin XH, Luo J, Duan JL, Cai MY, Chen JW, et al. ITLN1 inhibits tumor neovascularization and myeloid derived suppressor cells accumulation in colorectal carcinoma. Oncogene 2021;40:5925–37.
pubmed: 34363021
doi: 10.1038/s41388-021-01965-5
Yan G, Zhao H, Zhang Q, Zhou Y, Wu L, Lei J, et al. A RIPK3-PGE2 circuit mediates myeloid-derived suppressor cell-potentiated colorectal carcinogenesis. Cancer Res. 2018;78:5586–99.
pubmed: 30012671
doi: 10.1158/0008-5472.CAN-17-3962
Wang Y, Yin K, Tian J, Xia X, Ma J, Tang X, et al. Granulocytic myeloid-derived suppressor cells promote the stemness of colorectal cancer cells through exosomal S100A9. Adv Sci (Weinh). 2019;6:1901278.
doi: 10.1002/advs.201901278
Krishnamoorthy M, Gerhardt L, Maleki Vareki S. Immunosuppressive effects of myeloid-derived suppressor cells in cancer and immunotherapy. Cells 2021;10:1170.
pubmed: 34065010
pmcid: 8150533
doi: 10.3390/cells10051170
Kan G, Wang Z, Sheng C, Chen G, Yao C, Mao Y, et al. Dual inhibition of DKC1 and MEK1/2 synergistically restrains the growth of colorectal cancer cells. Adv Sci (Weinh). 2021;8:2004344.
doi: 10.1002/advs.202004344
Li T, Li X, Zamani A, Wang W, Lee CN, Li M, et al. c-Rel is a myeloid checkpoint for cancer immunotherapy. Nat Cancer 2020;1:507–17.
pubmed: 33458695
pmcid: 7808269
doi: 10.1038/s43018-020-0061-3
Li ZW, Sun B, Gong T, Guo S, Zhang J, Wang J, et al. GNAI1 and GNAI3 reduce colitis-associated tumorigenesis in mice by blocking IL6 signaling and down-regulating expression of GNAI2. Gastroenterology. 2019;156:2297–312.
pubmed: 30836096
doi: 10.1053/j.gastro.2019.02.040
Shi M, Chen Z, Chen M, Liu J, Li J, Xing Z, et al. Continuous activation of polymorphonuclear myeloid-derived suppressor cells during pregnancy is critical for fetal development. Cell Mol Immunol. 2021;18:1692–707.
pubmed: 34099889
doi: 10.1038/s41423-021-00704-w
Alder MN, Mallela J, Opoka AM, Lahni P, Hildeman DA, Wong HR. Olfactomedin 4 marks a subset of neutrophils in mice. Innate Immun. 2019;25:22–33.
pubmed: 30537894
doi: 10.1177/1753425918817611
Alder MN, Opoka AM, Lahni P, Hildeman DA, Wong HR. Olfactomedin-4 is a candidate marker for a pathogenic neutrophil subset in septic shock. Crit Care Med. 2017;45:e426–e32.
pubmed: 27635771
pmcid: 5512699
doi: 10.1097/CCM.0000000000002102
Liu W, Li H, Aerbajinai W, Botos I, Rodgers GP. OLFM4-RET fusion is an oncogenic driver in small intestine adenocarcinoma. Oncogene 2022;41:72–82.
pubmed: 34675408
doi: 10.1038/s41388-021-02072-1
Wang XY, Chen SH, Zhang YN, Xu CF. Olfactomedin-4 in digestive diseases: a mini-review. World J Gastroenterol. 2018;24:1881–7.
pubmed: 29740203
pmcid: 5937205
doi: 10.3748/wjg.v24.i17.1881
Liu W, Rodgers GP. Olfactomedin 4 expression and functions in innate immunity, inflammation, and cancer. Cancer Metastasis Rev. 2016;35:201–12.
pubmed: 27178440
doi: 10.1007/s10555-016-9624-2
Gersemann M, Becker S, Nuding S, Antoni L, Ott G, Fritz P, et al. Olfactomedin-4 is a glycoprotein secreted into mucus in active IBD. J Crohns Colitis. 2012;6:425–34.
pubmed: 22398066
doi: 10.1016/j.crohns.2011.09.013
Liu W, Yan M, Liu Y, Wang R, Li C, Deng C, et al. Olfactomedin 4 down-regulates innate immunity against Helicobacter pylori infection. Proc Natl Acad Sci USA. 2010;107:11056–61.
pubmed: 20534456
pmcid: 2890768
doi: 10.1073/pnas.1001269107
Amirbeagi F, Thulin P, Pullerits R, Pedersen B, Andersson BA, Dahlgren C, et al. Olfactomedin-4 autoantibodies give unusual c-ANCA staining patterns with reactivity to a subpopulation of neutrophils. J Leukoc Biol. 2015;97:181–9.
pubmed: 25387833
doi: 10.1189/jlb.5A0614-311R
Ye L, Kriegl L, Reiter FP, Munker SM, Itzel T, Teufel A, et al. Prognostic significance and functional relevance of olfactomedin 4 in early-stage hepatocellular carcinoma. Clin Transl Gastroenterol. 2020;11:e00124.
pubmed: 31990698
pmcid: 7056049
doi: 10.14309/ctg.0000000000000124
Seko N, Oue N, Noguchi T, Sentani K, Sakamoto N, Hinoi T, et al. Olfactomedin 4 (GW112, hGC-1) is an independent prognostic marker for survival in patients with colorectal cancer. Exp Ther Med. 2010;1:73–8.
pubmed: 23136596
pmcid: 3490347
doi: 10.3892/etm_00000013
Gao XZ, Wang GN, Zhao WG, Han J, Diao CY, Wang XH, et al. Blocking OLFM4/HIF-1alpha axis alleviates hypoxia-induced invasion, epithelial-mesenchymal transition, and chemotherapy resistance in non-small-cell lung cancer. J Cell Physiol. 2019;234:15035–43.
doi: 10.1002/jcp.28144
Clemmensen SN, Glenthoj AJ, Heeboll S, Nielsen HJ, Koch C, Borregaard N. Plasma levels of OLFM4 in normals and patients with gastrointestinal cancer. J Cell Mol Med. 2015;19:2865–73.
pubmed: 26416558
pmcid: 4687705
doi: 10.1111/jcmm.12679
Sharma D, Malik A, Guy CS, Karki R, Vogel P, Kanneganti TD. Pyrin inflammasome regulates tight junction integrity to restrict colitis and tumorigenesis. Gastroenterology 2018;154:948–64 e8.
pubmed: 29203393
doi: 10.1053/j.gastro.2017.11.276
Chen Z, Zhang X, Lv S, Xing Z, Shi M, Li X, et al. Treatment with endothelin-A receptor antagonist BQ123 attenuates acute inflammation in mice through T-cell-dependent polymorphonuclear myeloid-derived suppressor cell activation. Front Immunol. 2021;12:641874.
pubmed: 33828553
pmcid: 8019801
doi: 10.3389/fimmu.2021.641874
Davis RJ, Moore EC, Clavijo PE, Friedman J, Cash H, Chen Z, et al. Anti-PD-L1 efficacy can be enhanced by inhibition of myeloid-derived suppressor cells with a selective inhibitor of PI3Kdelta/gamma. Cancer Res. 2017;77:2607–19.
pubmed: 28364000
pmcid: 5466078
doi: 10.1158/0008-5472.CAN-16-2534
Liu W, Li H, Hong SH, Piszczek GP, Chen W, Rodgers GP. Olfactomedin 4 deletion induces colon adenocarcinoma in Apc(Min/+) mice. Oncogene 2016;35:5237–47.
pubmed: 26973250
pmcid: 5057043
doi: 10.1038/onc.2016.58
Block AS, Saraswati S, Lichti CF, Mahadevan M, Diekman AB. Co-purification of Mac-2 binding protein with galectin-3 and association with prostasomes in human semen. Prostate 2011;71:711–21.
pubmed: 21031433
doi: 10.1002/pros.21287
Cao L, Xia X, Kong Y, Jia F, Yuan B, Li R, et al. Deregulation of tumor suppressive ASXL1-PTEN/AKT axis in myeloid malignancies. J Mol Cell Biol. 2020;12:688–99.
pubmed: 32236560
pmcid: 7749738
doi: 10.1093/jmcb/mjaa011
Wang S, Liu H, Xin J, Rahmanzadeh R, Wang J, Yao C, et al. Chlorin-based photoactivable galectin-3-inhibitor nanoliposome for enhanced photodynamic therapy and NK cell-related immunity in melanoma. ACS Appl Mater Interfaces. 2019;11:41829–41.
pubmed: 31617343
doi: 10.1021/acsami.9b09560
Schuijers J, van der Flier LG, van Es J, Clevers H. Robust Cre-mediated recombination in small intestinal stem cells utilizing the olfm4 locus. Stem cell Rep. 2014;3:234–41.
doi: 10.1016/j.stemcr.2014.05.018
Dong X, Pan P, Zheng DW, Bao P, Zeng X, Zhang XZ. Bioinorganic hybrid bacteriophage for modulation of intestinal microbiota to remodel tumor-immune microenvironment against colorectal cancer. Sci Adv. 2020;6:eaba1590.
pubmed: 32440552
pmcid: 7228756
doi: 10.1126/sciadv.aba1590
Segal AW. Studies on patients establish Crohn’s disease as a manifestation of impaired innate immunity. J Intern Med. 2019;286:373–88.
pubmed: 31136040
doi: 10.1111/joim.12945
Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, Iglesias M, et al. TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 2018;554:538–43.
pubmed: 29443964
doi: 10.1038/nature25492
Angell HK, Bruni D, Barrett JC, Herbst R, Galon J. The immunoscore: colon cancer and beyond. Clin Cancer Res. 2020;26:332–9.
pubmed: 31413009
doi: 10.1158/1078-0432.CCR-18-1851
Yan YP, Lang BT, Vemuganti R, Dempsey RJ. Galectin-3 mediates post-ischemic tissue remodeling. Brain Res. 2009;1288:116–24.
pubmed: 19573520
doi: 10.1016/j.brainres.2009.06.073
Yip PK, Carrillo-Jimenez A, King P, Vilalta A, Nomura K, Chau CC, et al. Galectin-3 released in response to traumatic brain injury acts as an alarmin orchestrating brain immune response and promoting neurodegeneration. Sci Rep. 2017;7:41689.
pubmed: 28128358
pmcid: 5269662
doi: 10.1038/srep41689
Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gumus M, Mazieres J, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med. 2018;379:2040–51.
pubmed: 30280635
doi: 10.1056/NEJMoa1810865
Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature 2017;541:321–30.
pubmed: 28102259
doi: 10.1038/nature21349
Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017;357:409–13.
pubmed: 28596308
pmcid: 5576142
doi: 10.1126/science.aan6733
Yassin M, Sadowska Z, Djurhuus D, Nielsen B, Tougaard P, Olsen J, et al. Upregulation of PD-1 follows tumour development in the AOM/DSS model of inflammation-induced colorectal cancer in mice. Immunology 2019;158:35–46.
pubmed: 31429085
pmcid: 6700467
doi: 10.1111/imm.13093
Pilzecker B, Buoninfante OA, van den Berk P, Lancini C, Song JY, Citterio E, et al. DNA damage tolerance in hematopoietic stem and progenitor cells in mice. Proc Natl Acad Sci USA. 2017;114:E6875–E83.
pubmed: 28761001
pmcid: 5565453
doi: 10.1073/pnas.1706508114
Condamine T, Dominguez GA, Youn JI, Kossenkov AV, Mony S, Alicea-Torres K, et al. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol. 2016;1:aaf8943.
pubmed: 28417112
pmcid: 5391495
doi: 10.1126/sciimmunol.aaf8943
Nan J, Xing YF, Hu B, Tang JX, Dong HM, He YM, et al. Endoplasmic reticulum stress induced LOX-1(+) CD15(+) polymorphonuclear myeloid-derived suppressor cells in hepatocellular carcinoma. Immunology. 2018;154:144–55.
pubmed: 29211299
doi: 10.1111/imm.12876
He YM, Li X, Perego M, Nefedova Y, Kossenkov AV, Jensen EA, et al. Transitory presence of myeloid-derived suppressor cells in neonates is critical for control of inflammation. Nat Med. 2018;24:224–31.
pubmed: 29334374
pmcid: 5803434
doi: 10.1038/nm.4467
Liu Y, Perego M, Xiao Q, He Y, Fu S, He J, et al. Lactoferrin-induced myeloid-derived suppressor cell therapy attenuates pathologic inflammatory conditions in newborn mice. J Clin Invest. 2019;129:4261–75.
pubmed: 31483289
pmcid: 6763238
doi: 10.1172/JCI128164
Liang J, Li H, Chen J, He L, Du X, Zhou L, et al. Dendrobium officinale polysaccharides alleviate colon tumorigenesis via restoring intestinal barrier function and enhancing anti-tumor immune response. Pharm Res. 2019;148:104417.
doi: 10.1016/j.phrs.2019.104417
Proietti M, Cornacchione V, Rezzonico Jost T, Romagnani A, Faliti CE, Perruzza L, et al. ATP-gated ionotropic P2X7 receptor controls follicular T helper cell numbers in Peyer’s patches to promote host-microbiota mutualism. Immunity 2014;41:789–801.
pubmed: 25464855
doi: 10.1016/j.immuni.2014.10.010
He Y, Chen Y, Song W, Zhu L, Dong Z, Ow DW. A Pap1-Oxs1 signaling pathway for disulfide stress in Schizosaccharomyces pombe. Nucleic Acids Res. 2017;45:106–14.
pubmed: 27664222
doi: 10.1093/nar/gkw818
Zhang J, Jiang X, Yin J, Dou S, Xie X, Liu T, et al. RNF141 interacts with KRAS to promote colorectal cancer progression. Oncogene 2021;40:5829–42.
pubmed: 34345014
pmcid: 8484013
doi: 10.1038/s41388-021-01877-4
Hirata N, Suizu F, Matsuda-Lennikov M, Tanaka T, Edamura T, Ishigaki S, et al. Functional characterization of lysosomal interaction of Akt with VRK2. Oncogene 2018;37:5367–86.
pubmed: 29872222
pmcid: 6172193
doi: 10.1038/s41388-018-0330-0
Ding L, Zhang Z, Zhao C, Chen L, Chen Z, Zhang J, et al. Ribosomal L1 domain-containing protein 1 coordinates with HDM2 to negatively regulate p53 in human colorectal cancer cells. J Exp Clin Cancer Res. 2021;40:245.
pubmed: 34362424
pmcid: 8344204
doi: 10.1186/s13046-021-02057-8
Nan G, Zhao SH, Wang T, Chao D, Tian RF, Wang WJ, et al. CD147 supports paclitaxel resistance via interacting with RanBP1. Oncogene 2022;41:983–96.
pubmed: 34974521
pmcid: 8837534
doi: 10.1038/s41388-021-02143-3
Zhang T, Li J, Yin F, Lin B, Wang Z, Xu J, et al. Toosendanin demonstrates promising antitumor efficacy in osteosarcoma by targeting STAT3. Oncogene 2017;36:6627–39.
pubmed: 28783167
pmcid: 5702716
doi: 10.1038/onc.2017.270
Zhao S, Yang M, Zhou W, Zhang B, Cheng Z, Huang J, et al. Kinetic and high-throughput profiling of epigenetic interactions by 3D-carbene chip-based surface plasmon resonance imaging technology. Proc Natl Acad Sci USA. 2017;114:E7245–E54.
pubmed: 28808021
pmcid: 5584424
Wang S, Li P, Lu SM, Ling ZQ. Chemoprevention of low-molecular-weight citrus pectin (LCP) in gastrointestinal cancer cells. Int J Biol Sci. 2016;12:746–56.
pubmed: 27194951
pmcid: 4870717
doi: 10.7150/ijbs.13988