microRNAs signatures as potential biomarkers of structural cardiotoxicity in human-induced pluripotent stem-cell derived cardiomyocytes.


Journal

Archives of toxicology
ISSN: 1432-0738
Titre abrégé: Arch Toxicol
Pays: Germany
ID NLM: 0417615

Informations de publication

Date de publication:
07 2022
Historique:
received: 16 12 2021
accepted: 14 03 2022
pubmed: 30 4 2022
medline: 3 6 2022
entrez: 29 4 2022
Statut: ppublish

Résumé

Identification of early biomarkers of heart injury and drug-induced cardiotoxicity is important to eliminate harmful drug candidates early in preclinical development and to prevent severe drug effects. The main objective of this study was to investigate the expression of microRNAs (miRNAs) in human-induced pluripotent stem cell cardiomyocytes (hiPSC-CM) in response to a broad range of cardiotoxic drugs. Next generation sequencing was applied to hiPSC-CM treated for 72 h with 40 drugs falling into the categories of functional (i.e., ion channel blockers), structural (changes in cardiomyocytes structure), and general (causing both functional and structural) cardiotoxicants as well as non-cardiotoxic drugs. The largest changes in miRNAs expression were observed after treatments with structural or general cardiotoxicants. The number of deregulated miRNAs was the highest for idarubicin, mitoxantrone, and bortezomib treatments. RT-qPCR validation confirmed upregulation of several miRNAs across multiple treatments at therapeutically relevant concentrations: hsa-miR-187-3p, hsa-miR-146b-5p, hsa-miR-182-5p (anthracyclines); hsa-miR-365a-5p, hsa-miR-185-3p, hsa-miR-184, hsa-miR-182-5p (kinase inhibitors); hsa-miR-182-5p, hsa-miR-126-3p and hsa-miR-96-5p (common some anthracyclines, kinase inhibitors and bortezomib). Further investigations showed that an upregulation of hsa-miR-187-3p and hsa-miR-182-5p could serve as a potential biomarker of structural cardiotoxicity and/or an additional endpoint to characterize cardiac injury in vitro.

Identifiants

pubmed: 35488128
doi: 10.1007/s00204-022-03280-8
pii: 10.1007/s00204-022-03280-8
doi:

Substances chimiques

Anthracyclines 0
Biomarkers 0
MicroRNAs 0
Bortezomib 69G8BD63PP

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2033-2047

Subventions

Organisme : Walloon region
ID : DGO6 (Convention N°7245)

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Ando H, Yoshinaga T, Yamamoto W et al (2017) A new paradigm for drug-induced torsadogenic risk assessment using human iPS cell-derived cardiomyocytes. J Pharmacol Toxicol Methods 84:111–127. https://doi.org/10.1016/j.vascn.2016.12.003
doi: 10.1016/j.vascn.2016.12.003 pubmed: 27956204
Bailey WJ, Glaab WE (2018) Accessible miRNAs as Novel Toxicity Biomarkers. Int J Toxicol 37(2):116–120. https://doi.org/10.1177/1091581817752405
doi: 10.1177/1091581817752405 pubmed: 29357765
Blinova K, Dang Q, Millard D et al (2018) International multisite study of human-induced pluripotent stem cell-derived cardiomyocytes for drug proarrhythmic potential assessment. Cell Rep 24(13):3582–3592. https://doi.org/10.1016/j.celrep.2018.08.079
doi: 10.1016/j.celrep.2018.08.079 pubmed: 30257217 pmcid: 6226030
Burridge PW, Li YF, Matsa E et al (2016) Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med 22(5):547–556. https://doi.org/10.1038/nm.4087
doi: 10.1038/nm.4087 pubmed: 27089514 pmcid: 5086256
Carley AN, Taegtmeyer H, Lewandowski ED (2014) Matrix revisited: mechanisms linking energy substrate metabolism to the function of the heart. Circ Res 114(4):717–729. https://doi.org/10.1161/CIRCRESAHA.114.301863
doi: 10.1161/CIRCRESAHA.114.301863 pubmed: 24526677 pmcid: 4410983
Chaudhari U, Nemade H, Gaspar JA, Hescheler J, Hengstler JG, Sachinidis A (2016) MicroRNAs as early toxicity signatures of doxorubicin in human-induced pluripotent stem cell-derived cardiomyocytes. Arch Toxicol 90(12):3087–3098. https://doi.org/10.1007/s00204-016-1668-0
doi: 10.1007/s00204-016-1668-0 pubmed: 26842497 pmcid: 5104806
Cross MJ, Berridge BR, Clements PJ et al (2015) Physiological, pharmacological and toxicological considerations of drug-induced structural cardiac injury. Br J Pharmacol 172(4):957–974. https://doi.org/10.1111/bph.12979
doi: 10.1111/bph.12979 pubmed: 25302413 pmcid: 4314188
Damiani RM, Moura DJ, Viau CM, Caceres RA, Henriques JAP, Saffi J (2016) Pathways of cardiac toxicity: comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch Toxicol 90(9):2063–2076. https://doi.org/10.1007/s00204-016-1759-y
doi: 10.1007/s00204-016-1759-y pubmed: 27342245
Deidda M, Mercurio V, Cuomo A, Noto A, Mercuro G, Cadeddu Dessalvi C (2019) Metabolomic perspectives in antiblastic cardiotoxicity and cardioprotection. Int J Mol Sci 20(19). https://doi.org/10.3390/ijms20194928
Di YF, Li DC, Shen YQ et al (2017) MiR-146b protects cardiomyocytes injury in myocardial ischemia/reperfusion by targeting Smad4. Am J Transl Res 9(2):656–663
pubmed: 28337293 pmcid: 5340700
Ektesabi AM, Mori K, Tsoporis JN et al (2021) Mesenchymal stem/stromal cells increase cardiac miR-187-3p expression in a polymicrobial animal model of sepsis. Shock 56(1):133–141. https://doi.org/10.1097/SHK.0000000000001701
doi: 10.1097/SHK.0000000000001701 pubmed: 33378320
Ferri N, Siegl P, Corsini A, Herrmann J, Lerman A, Benghozi R (2013) Drug attrition during pre-clinical and clinical development: understanding and managing drug-induced cardiotoxicity. Pharmacol Ther 138(3):470–484. https://doi.org/10.1016/j.pharmthera.2013.03.005
doi: 10.1016/j.pharmthera.2013.03.005 pubmed: 23507039
Garcia R, Villar AV, Cobo M et al (2013) Circulating levels of miR-133a predict the regression potential of left ventricular hypertrophy after valve replacement surgery in patients with aortic stenosis. J Am Heart Assoc 2(4):e000211. https://doi.org/10.1161/JAHA.113.000211
doi: 10.1161/JAHA.113.000211 pubmed: 23948643 pmcid: 3828793
Glineur SF, De Ron P, Hanon E, Valentin JP, Dremier S, Nogueira da Costa A (2016) Paving the route to plasma miR-208a-3p as an acute cardiac injury biomarker: preclinical rat data supports its use in drug safety assessment. Toxicol Sci 149(1):89–97. https://doi.org/10.1093/toxsci/kfv222
doi: 10.1093/toxsci/kfv222 pubmed: 26454886
Holmgren G, Synnergren J, Bogestal Y et al (2015) Identification of novel biomarkers for doxorubicin-induced toxicity in human cardiomyocytes derived from pluripotent stem cells. Toxicology 328:102–111. https://doi.org/10.1016/j.tox.2014.12.018
doi: 10.1016/j.tox.2014.12.018 pubmed: 25529476
Kalozoumi G, Yacoub M, Sanoudou D (2014) MicroRNAs in heart failure: small molecules with major impact. Glob Cardiol Sci Pract 2:79–102. https://doi.org/10.5339/gcsp.2014.30
doi: 10.5339/gcsp.2014.30
Kim JS, Pak K, Goh TS et al (2018) Prognostic value of micrornas in coronary artery diseases: a meta-analysis. Yonsei Med J 59(4):495–500. https://doi.org/10.3349/ymj.2018.59.4.495
doi: 10.3349/ymj.2018.59.4.495 pubmed: 29749132 pmcid: 5949291
Koci B, Luerman G, Duenbostell A et al (2017) An impedance-based approach using human iPSC-derived cardiomyocytes significantly improves in vitro prediction of in vivo cardiotox liabilities. Toxicol Appl Pharmacol 329:121–127. https://doi.org/10.1016/j.taap.2017.05.023
doi: 10.1016/j.taap.2017.05.023 pubmed: 28546047
Lamore SD, Ahlberg E, Boyer S et al (2017) Deconvoluting kinase inhibitor induced cardiotoxicity. Toxicol Sci 158(1):213–226. https://doi.org/10.1093/toxsci/kfx082
doi: 10.1093/toxsci/kfx082 pubmed: 28453775 pmcid: 5837613
Larupa Santos J, Rodriguez I, M SO, Hjorth Bentzen B, Schmitt N (2020) Investigating gene-microRNA networks in atrial fibrillation patients with mitral valve regurgitation. PLoS One 15(5):e0232719. https://doi.org/10.1371/journal.pone.0232719
doi: 10.1371/journal.pone.0232719 pubmed: 32392228 pmcid: 7213724
Laverty H, Benson C, Cartwright E et al (2011) How can we improve our understanding of cardiovascular safety liabilities to develop safer medicines? Br J Pharmacol 163(4):675–693. https://doi.org/10.1111/j.1476-5381.2011.01255.x
doi: 10.1111/j.1476-5381.2011.01255.x pubmed: 21306581 pmcid: 3111672
Li J, Hua Y, Miyagawa S et al (2020) hiPSC-derived cardiac tissue for disease modeling and drug discovery. Int J Mol Sci 21(23). https://doi.org/10.3390/ijms21238893
Mamoshina P, Rodriguez B, Bueno-Orovio A (2021) Toward a broader view of mechanisms of drug cardiotoxicity. Cell Rep Med 2(3):100216. https://doi.org/10.1016/j.xcrm.2021.100216
doi: 10.1016/j.xcrm.2021.100216 pubmed: 33763655 pmcid: 7974548
Matsumoto S, Sakata Y, Suna S et al (2013) Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circ Res 113(3):322–326. https://doi.org/10.1161/CIRCRESAHA.113.301209
doi: 10.1161/CIRCRESAHA.113.301209 pubmed: 23743335
Mirna M, Paar V, Rezar R et al (2019) MicroRNAs in inflammatory heart diseases and sepsis-induced cardiac dysfunction: a potential scope for the future? Cells 8(11). https://doi.org/10.3390/cells8111352
Mumby S, Perros F, Hui C et al (2021) Extracellular matrix degradation pathways and fatty acid metabolism regulate distinct pulmonary vascular cell types in pulmonary arterial hypertension. Pulm Circ 11(1):2045894021996190. https://doi.org/10.1177/2045894021996190
doi: 10.1177/2045894021996190 pubmed: 34408849 pmcid: 8366141
Nemade H, Chaudhari U, Acharya A et al (2018) Cell death mechanisms of the anti-cancer drug etoposide on human cardiomyocytes isolated from pluripotent stem cells. Arch Toxicol 92(4):1507–1524. https://doi.org/10.1007/s00204-018-2170-7
doi: 10.1007/s00204-018-2170-7 pubmed: 29397400 pmcid: 5882643
Nowis D, Maczewski M, Mackiewicz U et al (2010) Cardiotoxicity of the anticancer therapeutic agent bortezomib. Am J Pathol 176(6):2658–2668. https://doi.org/10.2353/ajpath.2010.090690
doi: 10.2353/ajpath.2010.090690 pubmed: 20519734 pmcid: 2877829
Palmer JA, Smith AM, Gryshkova V, Donley ELR, Valentin JP, Burrier RE (2020) A targeted metabolomics-based assay using human induced pluripotent stem cell-derived cardiomyocytes identifies structural and functional cardiotoxicity potential. Toxicol Sci 174(2):218–240. https://doi.org/10.1093/toxsci/kfaa015
doi: 10.1093/toxsci/kfaa015 pubmed: 32040181 pmcid: 7098380
Ruggeri C, Gioffre S, Achilli F, Colombo GI, D'Alessandra Y (2018) Role of microRNAs in doxorubicin-induced cardiotoxicity: an overview of preclinical models and cancer patients. Heart Fail Rev 23(1):109–122. https://doi.org/10.1007/s10741-017-9653-0
doi: 10.1007/s10741-017-9653-0 pubmed: 28944400
Shi J, Abdelwahid E, Wei L (2011) Apoptosis in anthracycline cardiomyopathy. Curr Pediatr Rev 7(4):329–336. https://doi.org/10.2174/157339611796892265
doi: 10.2174/157339611796892265 pubmed: 22212952 pmcid: 3248756
Skala M, Hanouskova B, Skalova L, Matouskova P (2019) MicroRNAs in the diagnosis and prevention of drug-induced cardiotoxicity. Arch Toxicol 93(1):1–9. https://doi.org/10.1007/s00204-018-2356-z
doi: 10.1007/s00204-018-2356-z pubmed: 30460422
Tantawy M, Pamittan FG, Singh S, Gong Y (2021) Epigenetic changes associated with anthracycline-induced cardiotoxicity. Clin Transl Sci 14(1):36–46. https://doi.org/10.1111/cts.12857
doi: 10.1111/cts.12857 pubmed: 32770710
Vegter EL, van der Meer P, de Windt LJ, Pinto YM, Voors AA (2016) MicroRNAs in heart failure: from biomarker to target for therapy. Eur J Heart Fail 18(5):457–468. https://doi.org/10.1002/ejhf.495
doi: 10.1002/ejhf.495 pubmed: 26869172
Wang JX, Gao J, Ding SL et al (2015) Oxidative Modification of miR-184 Enables It to Target Bcl-xL and Bcl-w. Mol Cell 59(1):50–61. https://doi.org/10.1016/j.molcel.2015.05.003
doi: 10.1016/j.molcel.2015.05.003 pubmed: 26028536
Wang J, Dong G, Chi W, Nie Y (2021) MiR-96 promotes myocardial infarction-induced apoptosis by targeting XIAP. Biomed Pharmacother 138:111208. https://doi.org/10.1016/j.biopha.2020.111208
doi: 10.1016/j.biopha.2020.111208 pubmed: 33752931
Weaver RJ, Valentin JP (2019) Today’s challenges to de-risk and predict drug safety in human “Mind-the-Gap”. Toxicol Sci 167(2):307–321. https://doi.org/10.1093/toxsci/kfy270
doi: 10.1093/toxsci/kfy270 pubmed: 30371856
Wu H, Wang Y, Wang X, Li R, Yin D (2017) MicroRNA-365 accelerates cardiac hypertrophy by inhibiting autophagy via the modulation of Skp2 expression. Biochem Biophys Res Commun 484(2):304–310. https://doi.org/10.1016/j.bbrc.2017.01.108
doi: 10.1016/j.bbrc.2017.01.108 pubmed: 28130111
Wu HB, Yang CS, Wang YC et al (2020) Proteasome inhibitor-related cardiotoxicity: mechanisms, diagnosis, and management. Curr Oncol Rep 22(7):66. https://doi.org/10.1007/s11912-020-00931-w
doi: 10.1007/s11912-020-00931-w pubmed: 32514632
Wu HB, Yang CS, Wang YC (2021) The expression of miR-365 in serum of hypertension patients with left ventricular hypertrophy was up-regulated, which was positively correlated with left ventricular mass index. Pharmgenomics Pers Med 14:905–913. https://doi.org/10.2147/PGPM.S319945
doi: 10.2147/PGPM.S319945 pubmed: 34321907 pmcid: 8312326
Yan ZX, Wu LL, Xue K et al (2014) MicroRNA187 overexpression is related to tumor progression and determines sensitivity to bortezomib in peripheral T-cell lymphoma. Leukemia 28(4):880–887. https://doi.org/10.1038/leu.2013.291
doi: 10.1038/leu.2013.291 pubmed: 24104394
Yang HH, Chen Y, Gao CY, Cui ZT, Yao JM (2017) Protective effects of MicroRNA-126 on human cardiac microvascular endothelial cells against hypoxia/reoxygenation-induced injury and inflammatory response by activating PI3K/Akt/eNOS signaling pathway. Cell Physiol Biochem 42(2):506–518. https://doi.org/10.1159/000477597
doi: 10.1159/000477597 pubmed: 28578351
Yu M, Liang W, Xie Y et al (2016) Circulating miR-185 might be a novel biomarker for clinical outcome in patients with dilated cardiomyopathy. Sci Rep 6:33580. https://doi.org/10.1038/srep33580
doi: 10.1038/srep33580 pubmed: 27645404 pmcid: 5028782
Zhang X, Guo L, Zeng H et al (2016) Multi-parametric assessment of cardiomyocyte excitation-contraction coupling using impedance and field potential recording: a tool for cardiac safety assessment. J Pharmacol Toxicol Methods 81:201–216. https://doi.org/10.1016/j.vascn.2016.06.004
doi: 10.1016/j.vascn.2016.06.004 pubmed: 27282640
Zhu L, Chen T, Ye W et al (2019) Circulating miR-182-5p and miR-5187-5p as biomarkers for the diagnosis of unprotected left main coronary artery disease. J Thorac Dis 11(5):1799–1808. https://doi.org/10.21037/jtd.2019.05.24
doi: 10.21037/jtd.2019.05.24 pubmed: 31285872 pmcid: 6588770

Auteurs

Vitalina Gryshkova (V)

UCB Biopharma SRL, Braine L'Alleud, Belgium. Vitalina.gryshkova@ucb.com.

Isabel Lushbough (I)

UCB Biopharma SRL, Braine L'Alleud, Belgium.
Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK.

Jessica Palmer (J)

Stemina Biomarker Discovery, Inc, Madison, WI, USA.

Robert Burrier (R)

Stemina Biomarker Discovery, Inc, Madison, WI, USA.

Annie Delaunois (A)

UCB Biopharma SRL, Braine L'Alleud, Belgium.

Elizabeth Donley (E)

Stemina Biomarker Discovery, Inc, Madison, WI, USA.

Jean-Pierre Valentin (JP)

UCB Biopharma SRL, Braine L'Alleud, Belgium.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH