Water-Based Synthesis of Copper Chalcogenide Structures and Their Photodynamic Immunomodulatory Activities on Mammalian Macrophages.
CZTS
Chalcogenide
Immunomodulatory drugs
Inflammation
Macrophages
Photodynamic therapy
Journal
Applied biochemistry and biotechnology
ISSN: 1559-0291
Titre abrégé: Appl Biochem Biotechnol
Pays: United States
ID NLM: 8208561
Informations de publication
Date de publication:
Aug 2022
Aug 2022
Historique:
accepted:
20
04
2022
pubmed:
1
5
2022
medline:
14
7
2022
entrez:
30
4
2022
Statut:
ppublish
Résumé
Generation of novel and versatile immunomodulatory agents that could suppress excessive inflammation has been crucial to fight against chronic inflammatory and autoimmune disorders. Immunomodulatory agents regulate the function of immune system cells to manage their activities. Current therapy regimens for the inflammatory and autoimmune disorders rely on immunomodulatory drug molecules but they are also associated with unwanted and severe side effects. In order to prevent the side effects associated with drug molecules, the field should generate novel immunomodulatory drug candidates and further test them. Moreover, the generation of photodynamic immunomodulatory molecules would also decrease possible side effects. Photodynamic activation enables specific and localized activation of the active ingredients upon exposure to a certain wavelength of light. In our study, we generated copper-based chalcogenide structures in gel and nanoparticle form by using a water-based method so that they are more biocompatible.After their chemical characterization, they were tested on mammalian macrophages in vitro. Our results suggest that these molecules were anti-inflammatory in dark conditions and their anti-inflammatory potentials significantly increased upon xenon light treatment. We are presenting novel photodynamic immunomodulatory agents that can be used to suppress excessive inflammation in disease conditions that have been associated with excessive inflammation.
Identifiants
pubmed: 35488952
doi: 10.1007/s12010-022-03942-4
pii: 10.1007/s12010-022-03942-4
doi:
Substances chimiques
Anti-Inflammatory Agents
0
Water
059QF0KO0R
Copper
789U1901C5
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3677-3688Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Wang, L., Wang, F. S., & Gershwin, M. E. (2015). Human autoimmune diseases: A comprehensive update. Journal of internal medicine, 278(4), 369–395. https://doi.org/10.1111/JOIM.12395
doi: 10.1111/JOIM.12395
pubmed: 26212387
Gao, S., Wang, S., & Song, Y. (2020). Novel immunomodulatory drugs and neo-substrates. Biomarker Research, 8(1), 1–8. https://doi.org/10.1186/S40364-020-0182-Y/FIGURES/3
doi: 10.1186/S40364-020-0182-Y/FIGURES/3
Crane E and List A. (2009). Immunomodulatory drugs. https://doi.org/10.1080/07357900500283101 , 23(7):625–634. https://doi.org/10.1080/07357900500283101
Yahfoufi, N., Alsadi, N., Jambi, M., and Matar, C. (2018). The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients. MDPI AG. https://doi.org/10.3390/nu10111618
Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., … Zhao, L. (2018). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. Impact Journals LLC. https://doi.org/10.18632/oncotarget.23208
Ayaz, F. (2018). Ruthenium pyridyl thiocyanate complex increased the production of pro-inflammatory TNFα and IL1β cytokines by the LPS stimulated mammalian macrophages in vitro. Molecular Biology Reports, 45(6), 2307–2312. https://doi.org/10.1007/s11033-018-4392-4
doi: 10.1007/s11033-018-4392-4
pubmed: 30284682
Ayaz, F., Yuzer, A., & Ince, M. (2019). From peripherally unsubstituted subphthalocyanines with anti-inflammatory activity on macrophages to tri-iodo derivatives with adjuvant and immunostimulatory functions. Journal of Porphyrins and Phthalocyanines, 23(1–2), 56–62. https://doi.org/10.1142/S1088424618501134
doi: 10.1142/S1088424618501134
Ayaz, F., Alas, M. O., & Genc, R. (2020). Differential ımmunomodulatory effect of carbon dots ınfluenced by the type of surface passivation agent. Inflammation, 43(2), 777–783. https://doi.org/10.1007/s10753-019-01165-0
doi: 10.1007/s10753-019-01165-0
pubmed: 31873835
Ayaz, F. (2020). Ruthenium bipyridyl dithiocyanate complex exerted adjuvant activity on the activated mammalian macrophages in vitro. Inflammation, 43(3), 1120–1126. https://doi.org/10.1007/s10753-020-01199-9
doi: 10.1007/s10753-020-01199-9
pubmed: 32076941
Ayaz, F., Gonul, İ, Demirbag, B., & Ocakoglu, K. (2019). Differential ımmunomodulatory activities of schiff base complexes depending on their metal conjugation. Inflammation, 42(5), 1878–1885. https://doi.org/10.1007/s10753-019-01050-w
doi: 10.1007/s10753-019-01050-w
pubmed: 31267275
Moyano, D. F., Liu, Y., Ayaz, F., Hou, S., Puangploy, P., Duncan, B., & Rotello, V. M. (2016). Immunomodulatory effects of coated gold nanoparticles in LPS-stimulated ın vitro and ın vivo murine model systems. Chem, 1(2), 320–327. https://doi.org/10.1016/j.chempr.2016.07.007
doi: 10.1016/j.chempr.2016.07.007
pubmed: 28255579
pmcid: 5328597
Kuzu, B., Ayaz, F., & Algul, O. (2019). Synthesis of new alicyclic oxalamide derivatives and their differential ımmunomodulatory activities on the mammalian cells. Journal of Heterocyclic Chemistry, 56(7), 1946–1952. https://doi.org/10.1002/jhet.3573
doi: 10.1002/jhet.3573
Ayaz, F., Isse, Q. A., Kheeree, R., Ersan, R. H., & Algül, Ö. (2019). Immunomodulatory and immunostimulatory effects of some bisbenzoxazole derivatives on lipopolysaccharide stimulated mammalian macrophages. Journal of Research in Pharmacy, 23(5), 944–951. https://doi.org/10.35333/jrp.2019.41
doi: 10.35333/jrp.2019.41
Ayaz, F., Ersan, R. H., & Algul, O. (2019). Symmetric bis-benzoxazole-based chemicals exerted anti-inflammatory effect on danger signal LPS-stimulated macrophages. Monatshefte fur Chemie, 150(6), 1137–1146. https://doi.org/10.1007/s00706-019-02398-3
doi: 10.1007/s00706-019-02398-3
Ayaz, F., Alaş, M. Ö., Oğuz, M., & Genç, R. (2019). Aluminum doped carbon nanodots as potent adjuvants on the mammalian macrophages. Molecular Biology Reports, 46(2), 2405–2415. https://doi.org/10.1007/s11033-019-04701-1
doi: 10.1007/s11033-019-04701-1
pubmed: 30778921
Yüzer, A., Ayaz, F., & Ince, M. (2019). Immunomodulatory activities of zinc(II)phthalocyanine on the mammalian macrophages through p38 pathway: Potential ex vivo immunomodulatory PDT reagents. Bioorganic Chemistry, 92, 103249. https://doi.org/10.1016/j.bioorg.2019.103249
doi: 10.1016/j.bioorg.2019.103249
pubmed: 31539741
Ayaz, F. (2018). Ruthenium based photosensitizer exerts ımmunostimulatory and possible adjuvant role on the mammalian macrophages ın vitro. Cumhuriyet Science Journal, 39(4), 991–998. https://doi.org/10.17776/csj.453074
doi: 10.17776/csj.453074
Ayaz, F., Ugur, N., Ocakoglu, K., & Ince, M. (2019). Photo-induced anti-inflammatory activities of chloro substituted subphthalocyanines on the mammalian macrophage in vitro. Photodiagnosis and Photodynamic Therapy, 25, 499–503. https://doi.org/10.1016/j.pdpdt.2019.02.002
doi: 10.1016/j.pdpdt.2019.02.002
pubmed: 30738845
Ayaz, F., Yuzer, A., & Ince, M. (2018). Immunostimulatory effect of Zinc Phthalocyanine derivatives on macrophages based on the pro-inflammatory TNFα and IL1β cytokine production levels. Toxicology in Vitro, 53, 172–177. https://doi.org/10.1016/j.tiv.2018.08.011
doi: 10.1016/j.tiv.2018.08.011
pubmed: 30144574
Ayaz, F. (2019). Anti-inflammatory properties of the Ruthenium polypyridil complex, K314, on the in vitro activated macrophages. Journal of Research in Pharmacy, 23(2), 164–169. https://doi.org/10.12991/jrp.2019.121
doi: 10.12991/jrp.2019.121
Ayaz, F. (2019). Heteroleptic ruthenium polypyridyl complex had differential effects on the production of pro-inflammatory cytokines TNFα, IL1β, and IL6 by the mammalian macrophages ın vitro. Inflammation, 42(4), 1383–1388. https://doi.org/10.1007/s10753-019-00999-y
doi: 10.1007/s10753-019-00999-y
pubmed: 30848409
Ayaz, F., Konucu, M., & Develi, E. E. (2019). Immunostimulatory and ımmunomodulatory effects of Nitzschia navis-varingica, Heterocapsa pygmaea and Chrysochromulina alifera whole cell extracts on mammalian macrophage cells. Natural and Engeneering Sciences, 4(3), 237–246. https://doi.org/10.28978/nesciences.646206
doi: 10.28978/nesciences.646206
Ayaz, F., Kheeree, R., Isse, Q. A., Ersan, R. H., & Algül, Ö. (2019). Bisbenzoxazole derivatives had an antiinflammatory effect on in vitro stimulated macrophages. Turkish Journal of Chemistry, 43(3), 963–971. https://doi.org/10.3906/kim-1812-54
doi: 10.3906/kim-1812-54
Önal, H. T., Yuzer, A., Ince, M., & Ayaz, F. (2020). Photo induced anti-inflammatory activities of a Thiophene substituted subphthalocyanine derivative. Photodiagnosis and Photodynamic Therapy, 30, 101701. https://doi.org/10.1016/j.pdpdt.2020.101701
doi: 10.1016/j.pdpdt.2020.101701
pubmed: 32184175
Ayaz, F., & Ocakoglu, K. (2020). Differential effects of aminochlorin derivatives on the phagocytic and inflammatory potentials of mammalian macrophages. European Journal of Pharmacology, 873, 172980. https://doi.org/10.1016/j.ejphar.2020.172980
doi: 10.1016/j.ejphar.2020.172980
pubmed: 32032600
Ayaz, F Arikoglu, T Demirhan, A and Kuyucu, S. (2020). A novel whole blood based method for lymphocyte transformation test in drug allergies. Journal of Immunological Methods, 479. https://doi.org/10.1016/j.jim.2020.112745
Yıldızlı, G., Coral, G., & Ayaz, F. (2020). Immunostimulatory activities of coliphages on ın vitro activated mammalian macrophages. Inflammation, 43(2), 595–604. https://doi.org/10.1007/s10753-019-01140-9
doi: 10.1007/s10753-019-01140-9
pubmed: 31792757
Ayaz, F., Yuzer, A., Ince, T., & Ince, M. (2020). Anti-cancer and anti-ınflammatory activities of bromo- and cyano-substituted azulene derivatives. Inflammation, 43(3), 1009–1018. https://doi.org/10.1007/s10753-020-01186-0
doi: 10.1007/s10753-020-01186-0
pubmed: 31955292
Ayaz, F., Gonul, I., Demirbag, B., & Ocakoglu, K. (2020). Novel copper bearing schiff bases with photodynamic anti-ınflammatory and anti-microbial activities. Applied Biochemistry and Biotechnology, 191(2), 716–727. https://doi.org/10.1007/s12010-019-03223-7
doi: 10.1007/s12010-019-03223-7
pubmed: 31853876
Dos Santos, AF, De Almeida, DRQ, Terra, LF, Baptista, MS, and Labriola, L (2019). Photodynamic therapy in cancer treatment - an update review. Journal of Cancer Metastasis and Treatment, 2019. https://doi.org/10.20517/2394-4722.2018.83
Kwiatkowski, S, Knap, B, Przystupski, D, Saczko, J, Kędzierska, E, Knap-Czop, K, … Kulbacka, J. (2018, October 1). Photodynamic therapy – mechanisms, photosensitizers and combinations. Biomedicine and Pharmacotherapy. Elsevier Masson SAS. https://doi.org/10.1016/j.biopha.2018.07.049
Brown, S. B., Brown, E. A., & Walker, I. (2004). The present and future role of photodynamic therapy in cancer treatment. Lancet Oncology, 5(8), 497–508. https://doi.org/10.1016/S1470-2045(04)01529-3
doi: 10.1016/S1470-2045(04)01529-3
pubmed: 15288239
Wang, W., Winkler, M. T., Gunawan, O., Gokmen, T., Todorov, T. K., Zhu, Y., & Mitzi, D. B. (2014). Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Advanced Energy Materials, 4(7), 1–5. https://doi.org/10.1002/aenm.201301465
doi: 10.1002/aenm.201301465
Gonce, M. K., Aslan, E., Ozel, F., & Hatay Patir, I. (2016). Dye-sensitized Cu2XSnS4(X=Zn, Ni, Fe Co, and Mn) nanofibers for efficient photocatalytic hydrogen evolution. Chemsuschem, 9(6), 600–605. https://doi.org/10.1002/cssc.201501661
doi: 10.1002/cssc.201501661
pubmed: 26880355
Coughlan, C., Ibáñez, M., Dobrozhan, O., Singh, A., Cabot, A., & Ryan, K. M. (2017). Compound copper chalcogenide nanocrystals. Chemical Reviews, 117(9), 5865–6109. https://doi.org/10.1021/acs.chemrev.6b00376
doi: 10.1021/acs.chemrev.6b00376
pubmed: 28394585
Wang, X., Ruan, Y., Feng, S., Chen, S., & Su, K. (2018). Ag clusters anchored conducting polyaniline as highly efficient cocatalyst for Cu2ZnSnS4 nanocrystals toward enhanced photocatalytic hydrogen generation. ACS Sustainable Chemistry and Engineering, 6(9), 11424–11432. https://doi.org/10.1021/acssuschemeng.8b01364
doi: 10.1021/acssuschemeng.8b01364
Stroyuk, O., Raevskaya, A., & Gaponik, N. (2018). Solar light harvesting with multinary metal chalcogenide nanocrystals. Chemical Society Reviews, 47(14), 5354–5422. https://doi.org/10.1039/c8cs00029h
doi: 10.1039/c8cs00029h
pubmed: 29799031
Das, S, Sa, K, Mahakul, PC, Raiguru, J, Alam, I, Subramanyam, B, and Mahanandia, P (2018). Synthesis of quaternary chalcogenide CZTS nanoparticles by a hydrothermal route. IOP Conference Series: Materials Science and Engineering, 338(1). https://doi.org/10.1088/1757-899X/338/1/012062
Kumar, R. S., Maddirevula, S., Easwaran, M., Dananjaya, S. H. S., & Kim, M. D. (2015). Antibacterial activity of novel Cu2ZnSnS4 nanoparticles against pathogenic strains. RSC Advances, 5(129), 106400–106405. https://doi.org/10.1039/c5ra15027b
doi: 10.1039/c5ra15027b
Larramona, G, Jacob, A, Chone, C, Muto, T, Cuccaro, Y, Delatouche, B, … Cedex, SA (2014). 8.6% efficient CZTSSe solar cells sprayed from water − ethanol CZTS colloidal solutions. https://doi.org/10.1021/jz501864a
Sun, Y., Zong, K., Zheng, H., Wang, H., Liu, J., Yan, H., & Zhu, M. (2013). Ethylene glycol-based dip coating route for the synthesis of Cu2ZnSnS4thin film. Materials Letters, 92, 195–197. https://doi.org/10.1016/j.matlet.2012.10.120
doi: 10.1016/j.matlet.2012.10.120
Thangaraju, D., Karthikeyan, R., Prakash, N., Moorthy Babu, S., & Hayakawa, Y. (2015). Growth and optical properties of Cu<inf>2</inf>ZnSnS<inf>4</inf> decorated reduced graphene oxide nanocomposites. Dalton Transactions, 44(33), 15031–15041. https://doi.org/10.1039/c5dt01542a
doi: 10.1039/c5dt01542a
pubmed: 26228244
Bahramzadeh, S., Abdizadeh, H., & Golobostanfard, M. R. (2015). Controlling the morphology and properties of solvothermal synthesized Cu2ZnSnS4 nanoparticles by solvent type. Journal of Alloys and Compounds, 642, 124–130. https://doi.org/10.1016/j.jallcom.2015.04.093
doi: 10.1016/j.jallcom.2015.04.093
Liu, F., Shen, S., Zhou, F., Song, N., Wen, X., Stride, J. A., & Hao, X. (2015). Kesterite Cu2ZnSnS4 thin film solar cells by a facile DMF-based solution coating process. Journal of Materials Chemistry C, 3(41), 10783–10792. https://doi.org/10.1039/c5tc01750e
doi: 10.1039/c5tc01750e
Xin, H, Katahara, JK, Braly, IL, and Hillhouse, HW (2014). 8% Efficient Cu2ZnSn(S,Se)4solar cells from redox equilibrated simple precursors in DMSO. Advanced Energy Materials, 4(11). https://doi.org/10.1002/aenm.201301823
Tanaka, K., Moritake, N., & Uchiki, H. (2007). Preparation of Cu2 ZnSnS4 thin films by sulfurizing sol-gel deposited precursors. Solar Energy Materials and Solar Cells, 91(13), 1199–1201. https://doi.org/10.1016/j.solmat.2007.04.012
doi: 10.1016/j.solmat.2007.04.012
Madiraju, AV, Taneja, K, Kumar, M, Keshri, AK, Mahajan, SB, Seelaboyina, R, … Sopori, B (2013). Synthesis of CZTS in aqueous media using microwave ırradiation. Conference Papers in Energy, 2013. https://doi.org/10.1155/2013/962730
Luo, YH, Chang, LW, and Lin, P (2015). Metal-based nanoparticles and the ımmune system: Activation, ınflammation, and potential applications. BioMed Research International, 2015(Figure 1). https://doi.org/10.1155/2015/143720
Yun, B, Zhu, H, Yuan, J, Sun, Q, and Li, Z (2020, June 14). Synthesis, modification and bioapplications of nanoscale copper chalcogenides. Journal of Materials Chemistry B. Royal Society of Chemistry. https://doi.org/10.1039/d0tb00182a
Tourinho, PS, van Gestel, CAM, Lofts, S, Svendsen, C, Soares, AMVM, and Loureiro, S (2012, August). Metal-based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates. Environmental Toxicology and Chemistry. https://doi.org/10.1002/etc.1880
Gatto, F, and Bardi, G (2018, October 1). Metallic nanoparticles: General research approaches to immunological characterization. Nanomaterials. MDPI AG. https://doi.org/10.3390/nano8100753
Roach, K. A., Stefaniak, A. B., & Roberts, J. R. (2019). Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease. Journal of Immunotoxicology, 16(1), 87–124. https://doi.org/10.1080/1547691X.2019.1605553
doi: 10.1080/1547691X.2019.1605553
pubmed: 31195861
pmcid: 6649684
Petrarca, C, Clemente, E, Amato, V, Pedata, P, Sabbioni, E, Bernardini, G, … Di Gioacchino, M. (2015, July 15). Engineered metal based nanoparticles and innate immunity. Clinical and Molecular Allergy. BioMed Central Ltd. https://doi.org/10.1186/s12948-015-0020-1
Ngobili, TA, and Daniele, MA. (2016, May 1). Nanoparticles and direct immunosuppression. Experimental Biology and Medicine. SAGE Publications Inc. https://doi.org/10.1177/1535370216650053