Cutaneous nerve fibers participate in the progression of psoriasis by linking epidermal keratinocytes and immunocytes.
Botulinum toxin A
Psoriasis
Sensory nerve
Spinal cord hemi-section model
Journal
Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402
Informations de publication
Date de publication:
30 Apr 2022
30 Apr 2022
Historique:
received:
05
12
2021
accepted:
08
04
2022
revised:
23
03
2022
entrez:
30
4
2022
pubmed:
1
5
2022
medline:
4
5
2022
Statut:
epublish
Résumé
Recent studies have illustrated that psoriatic lesions are innervated by dense sensory nerve fibers. Psoriatic plaques appeared to improve after central or peripheral nerve injury. Therefore, the nervous system may play a vital role in psoriasis. We aimed to clarify the expression of nerve fibers in psoriasis and their relationship with immune cells and keratinocytes, and to explore the effect of skin nerve impairment. Our results illustrated that nerve fibers in psoriatic lesions increased and were closely innervated around immune cells and keratinocytes. RNA-seq analysis showed that peripheral sensory nerve-related genes were disrupted in psoriasis. In spinal cord hemi-section mice, sensory impairment improved psoriasiform dermatitis and inhibited the abnormal proliferation of keratinocytes. Botulinum toxin A alleviated psoriasiform dermatitis by inhibiting the secretion of calcitonin gene-related peptide. Collectively, cutaneous nerve fibers participate in the progression of psoriasis by linking epidermal keratinocytes and immunocytes. Neurological intervention may be a new treatment strategy for psoriasis.
Identifiants
pubmed: 35488965
doi: 10.1007/s00018-022-04299-x
pii: 10.1007/s00018-022-04299-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
267Subventions
Organisme : National Natural Science Foundation of China
ID : 81930089
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Menter A, Strober BE, Kaplan DH, Kivelevitch D, Prater EF, Stoff B, Armstrong AW, Connor C, Cordoro KM, Davis DMR, Elewski BE, Gelfand JM, Gordon KB, Gottlieb AB, Kavanaugh A, Kiselica M, Korman NJ, Kroshinsky D, Lebwohl M, Leonardi CL, Lichten J, Lim HW, Mehta NN, Paller AS, Parra SL, Pathy AL, Rupani RN, Siegel M, Wong EB, Wu JJ, Hariharan V, Elmets CA (2019) Joint AAD-NPF guidelines of care for the management and treatment of psoriasis with biologics. J Am Acad Dermatol 80:1029–1072. https://doi.org/10.1016/j.jaad.2018.11.057
doi: 10.1016/j.jaad.2018.11.057
pubmed: 30772098
Liang Y, Sarkar MK, Tsoi LC, Gudjonsson JE (2017) Psoriasis: a mixed autoimmune and autoinflammatory disease. Curr Opin Immunol 49:1–8. https://doi.org/10.1016/j.coi.2017.07.007
doi: 10.1016/j.coi.2017.07.007
pubmed: 28738209
pmcid: 5705427
Evers AWM, van Beugen S (2021) How stress affects the skin: from designs to mechanisms. Br J Dermatol 185:12–13. https://doi.org/10.1111/bjd.20397
doi: 10.1111/bjd.20397
pubmed: 34114221
pmcid: 8361690
Dixon LJ, Witcraft SM, McCowan NK, Brodell RT (2018) Stress and skin disease quality of life: the moderating role of anxiety sensitivity social concerns. Br J Dermatol 178:951–957. https://doi.org/10.1111/bjd.16082
doi: 10.1111/bjd.16082
pubmed: 29078254
Weddell G, Cowan MA, Palmer E, Ramaswamy S (1965) Psoriatic skin. Arch Dermatol 91:252–266. https://doi.org/10.1001/archderm.1965.01600090060012
doi: 10.1001/archderm.1965.01600090060012
pubmed: 14246165
Zhu TH, Nakamura M, Farahnik B, Abrouk M, Lee K, Singh R, Gevorgyan A, Koo J, Bhutani T (2016) The role of the nervous system in the pathophysiology of psoriasis: a review of cases of psoriasis remission or improvement following denervation injury. Am J Clin Dermatol 17:257–263. https://doi.org/10.1007/s40257-016-0183-7
doi: 10.1007/s40257-016-0183-7
pubmed: 26935938
Lee EB, Reynolds KA, Pithadia DJ, Thiyanaratnam J, Wu JJ (2019) Clearance of psoriasis after ischemic stroke. Cutis 103:74–76
pubmed: 30893385
Limjunyawong N, Dong X (2019) Spicy immunity: pain to gain. Immunity 51:426–428. https://doi.org/10.1016/j.immuni.2019.08.014
doi: 10.1016/j.immuni.2019.08.014
pubmed: 31533055
Cohen JA, Wu J, Kaplan DH (2020) Neuronal regulation of cutaneous immunity. J Immunol 204:264–270. https://doi.org/10.4049/jimmunol.1901109
doi: 10.4049/jimmunol.1901109
pubmed: 31907268
Lagomarsino VN, Kostic AD, Chiu IM (2021) Mechanisms of microbial-neuronal interactions in pain and nociception. Neurobiol Pain 9:100056. https://doi.org/10.1016/j.ynpai.2020.100056
doi: 10.1016/j.ynpai.2020.100056
pubmed: 33392418
Cohen JA, Edwards TN, Liu AW, Hirai T, Jones MR, Wu J, Li Y, Zhang S, Ho J, Davis BM, Albers KM, Kaplan DH (2019) Cutaneous TRPV1 neurons trigger protective innate type 17 anticipatory immunity. Cell. https://doi.org/10.1016/j.cell.2019.06.022
doi: 10.1016/j.cell.2019.06.022
pubmed: 31883793
pmcid: 6863386
Serhan N, Basso L, Sibilano R, Petitfils C, Meixiong J, Bonnart C, Reber LL, Marichal T, Starkl P, Cenac N, Dong X, Tsai M, Galli SJ, Gaudenzio N (2019) House dust mites activate nociceptor-mast cell clusters to drive type 2 skin inflammation. Nat Immunol 20:1435–1443. https://doi.org/10.1038/s41590-019-0493-z
doi: 10.1038/s41590-019-0493-z
pubmed: 31591569
pmcid: 6858877
Zhou Y, Wang P, Yan B-X, Chen X-Y, Landeck L, Wang Z-Y, Li X-X, Zhang J, Zheng M, Man X-Y (2020) Quantitative proteomic profile of psoriatic epidermis identifies OAS2 as a novel biomarker for disease activity. Front Immunol 11:1432–1532. https://doi.org/10.3389/fimmu.2020.01432
doi: 10.3389/fimmu.2020.01432
pubmed: 32849499
pmcid: 7410923
Tsoi LC, Rodriguez E, Degenhardt F, Baurecht H, Wehkamp U, Volks N, Szymczak S, Swindell WR, Sarkar MK, Raja K, Shao S, Patrick M, Gao Y, Uppala R, Perez White BE, Getsios S, Harms PW, Maverakis E, Elder JT, Franke A, Gudjonsson JE, Weidinger S (2019) Atopic dermatitis is an il-13-dominant disease with greater molecular heterogeneity compared to psoriasis. J Investig Dermatol 139:1480–1489. https://doi.org/10.1016/j.jid.2018.12.018
doi: 10.1016/j.jid.2018.12.018
pubmed: 30641038
Russell CB, Rand H, Bigler J, Kerkof K, Timour M, Bautista E, Krueger JG, Salinger DH, Welcher AA, Martin DA (2014) Gene expression profiles normalized in psoriatic skin by treatment with brodalumab, a human anti-IL-17 receptor monoclonal antibody. J Immunol 192:3828–3836. https://doi.org/10.4049/jimmunol.1301737
doi: 10.4049/jimmunol.1301737
pubmed: 24646743
Usoskin D, Furlan A, Islam S, Abdo H, Lönnerberg P, Lou D, Hjerling-Leffler J, Haeggström J, Kharchenko O, Kharchenko PV, Linnarsson S, Ernfors P (2015) Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci 18:145–153. https://doi.org/10.1038/nn.3881
doi: 10.1038/nn.3881
pubmed: 25420068
van der Fits L, Mourits S, Voerman JSA, Kant M, Boon L, Laman JD, Cornelissen F, Mus A-M, Florencia E, Prens EP, Lubberts E (2009) Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol 182:5836–5845. https://doi.org/10.4049/jimmunol.0802999
doi: 10.4049/jimmunol.0802999
pubmed: 19380832
Schön MP, Manzke V, Erpenbeck L (2021) Animal models of psoriasis-highlights and drawbacks. J Allergy Clin Immunol 147:439–455. https://doi.org/10.1016/j.jaci.2020.04.034
doi: 10.1016/j.jaci.2020.04.034
pubmed: 32560971
Julius D (2013) TRP channels and pain. Annu Rev Cell Dev Biol 29:355–384. https://doi.org/10.1146/annurev-cellbio-101011-155833
doi: 10.1146/annurev-cellbio-101011-155833
pubmed: 24099085
Nestle FO, Conrad C, Tun-Kyi A, Homey B, Gombert M, Boyman O, Burg G, Liu Y-J, Gilliet M (2005) Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J Exp Med 202:135–143. https://doi.org/10.1084/jem.20050500
doi: 10.1084/jem.20050500
pubmed: 15998792
pmcid: 2212894
Joseph T, Kurian J, Warwick DJ, Friedmann PS (2005) Unilateral remission of psoriasis following traumatic nerve palsy. Br J Dermatol 152:185–186. https://doi.org/10.1111/j.1365-2133.2005.06330.x
doi: 10.1111/j.1365-2133.2005.06330.x
pubmed: 15656831
Filli L, Zörner B, Weinmann O, Schwab ME (2011) Motor deficits and recovery in rats with unilateral spinal cord hemisection mimic the Brown–Sequard syndrome. Brain 134:2261–2273. https://doi.org/10.1093/brain/awr167
doi: 10.1093/brain/awr167
pubmed: 21752788
Roosterman D, Goerge T, Schneider SW, Bunnett NW, Steinhoff M (2006) Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Physiol Rev 86:1309–1379. https://doi.org/10.1152/physrev.00026.2005
doi: 10.1152/physrev.00026.2005
pubmed: 17015491
Armstrong AW, Read C (2020) Pathophysiology, clinical presentation, and treatment of psoriasis: a review. JAMA 323:1945–1960. https://doi.org/10.1001/jama.2020.4006
doi: 10.1001/jama.2020.4006
pubmed: 32427307
Huang W, Foster JA, Rogachefsky AS (2000) Pharmacology of botulinum toxin. J Am Acad Dermatol 43:249–259. https://doi.org/10.1067/mjd.2000.105567
doi: 10.1067/mjd.2000.105567
pubmed: 10906647
Tillmaand EG, Anapindi KDB, De La Toba EA, Guo CJ, Krebs J, Lenhart AE, Liu Q, Sweedler JV (2020) Quantitative characterization of the neuropeptide level changes in dorsal horn and dorsal root ganglia regions of the murine itch models. J Proteome Res 19:1248–1257. https://doi.org/10.1021/acs.jproteome.9b00758
doi: 10.1021/acs.jproteome.9b00758
pubmed: 31957451
pmcid: 7060821
Chu C, Artis D, Chiu IM (2020) Neuro-immune interactions in the tissues. Immunity 52:464–474. https://doi.org/10.1016/j.immuni.2020.02.017
doi: 10.1016/j.immuni.2020.02.017
pubmed: 32187517
Blake KJ, Jiang XR, Chiu IM (2019) Neuronal regulation of immunity in the skin and lungs. Trends Neurosci 42:537–551. https://doi.org/10.1016/j.tins.2019.05.005
doi: 10.1016/j.tins.2019.05.005
pubmed: 31213389
pmcid: 6661013
Taneda K, Tominaga M, Negi O, Tengara S, Kamo A, Ogawa H, Takamori K (2011) Evaluation of epidermal nerve density and opioid receptor levels in psoriatic itch. Br J Dermatol 165:277–284. https://doi.org/10.1111/j.1365-2133.2011.10347.x
doi: 10.1111/j.1365-2133.2011.10347.x
pubmed: 21457210
Tan Y, Ng WJ, Lee SZX, Lee BTK, Nattkemper LA, Yosipovitch G, Ng LG, Tey HL (2019) Dimensional optical clearing and imaging of pruritic atopic dermatitis and psoriasis skin reveals downregulation of epidermal innervation. J Investig Dermatol 139:1201–1204. https://doi.org/10.1016/j.jid.2018.11.006
doi: 10.1016/j.jid.2018.11.006
pubmed: 30471253
Chen O, Donnelly CR, Ji R-R (2020) Regulation of pain by neuro-immune interactions between macrophages and nociceptor sensory neurons. Curr Opin Neurobiol 62:17–25. https://doi.org/10.1016/j.conb.2019.11.006
doi: 10.1016/j.conb.2019.11.006
pubmed: 31809997
Kashem SW, Riedl MS, Yao C, Honda CN, Vulchanova L, Kaplan DH (2015) Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity 43:515–526. https://doi.org/10.1016/j.immuni.2015.08.016
doi: 10.1016/j.immuni.2015.08.016
pubmed: 26377898
pmcid: 4607048
Fukui T, Fukaya T, Uto T, Takagi H, Nasu J, Miyanaga N, Nishikawa Y, Koseki H, Choijookhuu N, Hishikawa Y, Yamashita Y, Sato K (2020) Pivotal role of CD103 in the development of psoriasiform dermatitis. Sci Rep 10:8371. https://doi.org/10.1038/s41598-020-65355-9
doi: 10.1038/s41598-020-65355-9
pubmed: 32433498
pmcid: 7239860
Kurihara K, Fujiyama T, Phadungsaksawasdi P, Ito T, Tokura Y (2019) Significance of IL-17A-producing CD8
doi: 10.1016/j.jdermsci.2019.06.002
pubmed: 31300254
Fattori V, Ferraz CR, Rasquel-Oliveira FS, Verri WA Jr (2021) Neuroimmune communication in infection and pain: friends or foes? Immunol Lett 229:32–43. https://doi.org/10.1016/j.imlet.2020.11.009
doi: 10.1016/j.imlet.2020.11.009
pubmed: 33248166
Kupczyk P, Reich A, Gajda M, Hołysz M, Wysokińska E, Paprocka M, Nevozhay D, Chodaczek G, Jagodziński PP, Ziółkowski P, Szepietowski JC (2018) UCHL1/PGP 9.5 dynamic in neuro-immune-cutaneous milieu: focusing on axonal nerve terminals and epidermal keratinocytes in psoriatic itch. Biomed Res Int 2018:7489316. https://doi.org/10.1155/2018/7489316
doi: 10.1155/2018/7489316
pubmed: 30148172
pmcid: 6083486
Granstein RD, Wagner JA, Stohl LL, Ding W (2015) Calcitonin gene-related peptide: key regulator of cutaneous immunity. Acta Physiol (Oxf) 213:586–594. https://doi.org/10.1111/apha.12442
doi: 10.1111/apha.12442
Liu JA, Yu J, Cheung CW (2021) Immune actions on the peripheral nervous system in pain. Int J Mol Sci. https://doi.org/10.3390/ijms22031448
doi: 10.3390/ijms22031448
pubmed: 35008895
pmcid: 8745296
Qin B, Sun C, Chen L, Wang S, Yang J, Xie Z, Shen Z (2021) The nerve injuries attenuate the persistence of psoriatic lesions. J Dermatol Sci 102:85–93. https://doi.org/10.1016/j.jdermsci.2021.02.0066
doi: 10.1016/j.jdermsci.2021.02.0066
pubmed: 33676787
Ostrowski SM, Belkadi A, Loyd CM, Diaconu D, Ward NL (2011) Cutaneous denervation of psoriasiform mouse skin improves acanthosis and inflammation in a sensory neuropeptide-dependent manner. J Investig Dermatol 131:1530–1538. https://doi.org/10.1038/jid.2011.60
doi: 10.1038/jid.2011.60
pubmed: 21471984
Ding W, Stohl LL, Xu L, Zhou XK, Manni M, Wagner JA, Granstein RD (2016) Calcitonin gene-related peptide-exposed endothelial cells bias antigen presentation to CD4+ T cells toward a Th17 response. J Immunol 196:2181–2194. https://doi.org/10.4049/jimmunol.1500303
doi: 10.4049/jimmunol.1500303
pubmed: 26829986
Amalia SN, Uchiyama A, Baral H, Inoue Y, Yamazaki S, Fujiwara C, Sekiguchi A, Yokoyama Y, Ogino S, Torii R, Hosoi M, Ishikawa O, Motegi S-I (2021) Suppression of neuropeptide by botulinum toxin improves imiquimod-induced psoriasis-like dermatitis via the regulation of neuroimmune system. J Dermatol Sci 101:58–68. https://doi.org/10.1016/j.jdermsci.2020.11.003
doi: 10.1016/j.jdermsci.2020.11.003
pubmed: 33176965