A common epigenetic mechanism across different cellular origins underlies systemic immune dysregulation in an idiopathic autism mouse model.


Journal

Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835

Informations de publication

Date de publication:
08 2022
Historique:
received: 19 10 2021
accepted: 06 04 2022
revised: 05 04 2022
pubmed: 2 5 2022
medline: 2 12 2022
entrez: 1 5 2022
Statut: ppublish

Résumé

Immune dysregulation plays a key role in the pathogenesis of autism. Changes occurring at the systemic level, from brain inflammation to disturbed innate/adaptive immune in the periphery, are frequently observed in patients with autism; however, the intrinsic mechanisms behind them remain elusive. We hypothesize a common etiology may lie in progenitors of different types underlying widespread immune dysregulation. By single-cell RNA sequencing (sc-RNA seq), we trace the developmental origins of immune dysregulation in a mouse model of idiopathic autism. It is found that both in aorta-gonad-mesonephros (AGM) and yolk sac (YS) progenitors, the dysregulation of HDAC1-mediated epigenetic machinery alters definitive hematopoiesis during embryogenesis and downregulates the expression of the AP-1 complex for microglia development. Subsequently, these changes result in the dysregulation of the immune system, leading to gut dysbiosis and hyperactive microglia in the brain. We further confirm that dysregulated immune profiles are associated with specific microbiota composition, which may serve as a biomarker to identify autism of immune-dysregulated subtypes. Our findings elucidate a shared mechanism for the origin of immune dysregulation from the brain to the gut in autism and provide new insight to dissecting the heterogeneity of autism, as well as the therapeutic potential of targeting immune-dysregulated autism subtypes.

Identifiants

pubmed: 35491410
doi: 10.1038/s41380-022-01566-y
pii: 10.1038/s41380-022-01566-y
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3343-3354

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Bourgeron T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci. 2015;16:551–63.
pubmed: 26289574 doi: 10.1038/nrn3992
Takumi T, Tamada K, Hatanaka F, Nakai N, Bolton PF. Behavioral neuroscience of autism. Neurosci Biobehav Rev. 2020;110:60–76.
pubmed: 31059731 doi: 10.1016/j.neubiorev.2019.04.012
de la Torre-Ubieta L, Won H, Stein JL, Geschwind DH. Advancing the understanding of autism disease mechanisms through genetics. Nat Med. 2016;22:345–61.
pubmed: 27050589 pmcid: 5072455 doi: 10.1038/nm.4071
Abrahams BS, Geschwind DH. Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet. 2008;9:341–55.
pubmed: 18414403 pmcid: 2756414 doi: 10.1038/nrg2346
Wisniowiecka-Kowalnik B, Nowakowska BA. Genetics and epigenetics of autism spectrum disorder-current evidence in the field. J Appl Genet. 2019;60:37–47.
pubmed: 30627967 pmcid: 6373410 doi: 10.1007/s13353-018-00480-w
Meltzer A, Van de Water J. The role of the immune system in autism spectrum disorder. Neuropsychopharmacology. 2017;42:284–98.
pubmed: 27534269 doi: 10.1038/npp.2016.158
Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005;57:67–81.
pubmed: 15546155 doi: 10.1002/ana.20315
Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K, Buckwalter J, et al. Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol psychiatry. 2010;68:368–76.
pubmed: 20674603 doi: 10.1016/j.biopsych.2010.05.024
Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li XM, et al. Elevated immune response in the brain of autistic patients. J Neuroimmunol. 2009;207:111–6.
pubmed: 19157572 pmcid: 2770268 doi: 10.1016/j.jneuroim.2008.12.002
Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, Van de Water J. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun. 2011;25:40–5.
pubmed: 20705131 doi: 10.1016/j.bbi.2010.08.003
Vuong HE, Hsiao EY. Emerging roles for the gut microbiome in autism spectrum disorder. Biol Psychiatry. 2017;81:411–23.
pubmed: 27773355 doi: 10.1016/j.biopsych.2016.08.024
Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155:1451–63.
pubmed: 24315484 pmcid: 3897394 doi: 10.1016/j.cell.2013.11.024
Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature. 2011;474:380–4.
pubmed: 21614001 pmcid: 3607626 doi: 10.1038/nature10110
Gupta S, Ellis SE, Ashar FN, Moes A, Bader JS, Zhan J, et al. Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat Commun. 2014;5:5748.
pubmed: 25494366 doi: 10.1038/ncomms6748
Geschwind DH. Genetics of autism spectrum disorders. Trends Cogn Sci. 2011;15:409–16.
pubmed: 21855394 pmcid: 3691066 doi: 10.1016/j.tics.2011.07.003
Hsiao EY, McBride SW, Chow J, Mazmanian SK, Patterson PH. Modeling an autism risk factor in mice leads to permanent immune dysregulation. Proc Natl Acad Sci USA. 2012;109:12776–81.
pubmed: 22802640 pmcid: 3411999 doi: 10.1073/pnas.1202556109
Heo Y, Zhang Y, Gao D, Miller VM, Lawrence DA. Aberrant immune responses in a mouse with behavioral disorders. PloS One. 2011;6:e20912.
pubmed: 21799730 pmcid: 3140472 doi: 10.1371/journal.pone.0020912
Golubeva AV, Joyce SA, Moloney G, Burokas A, Sherwin E, Arboleya S, et al. Microbiota-related changes in bile acid & tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. EBioMedicine. 2017;24:166–78.
pubmed: 28965876 pmcid: 5652137 doi: 10.1016/j.ebiom.2017.09.020
Li Z, Lan Y, He W, Chen D, Wang J, Zhou F, et al. Mouse embryonic head as a site for hematopoietic stem cell development. cell stem cell. 2012;11:663–75.
pubmed: 23122290 doi: 10.1016/j.stem.2012.07.004
Morgan K, Kharas M, Dzierzak E, Gilliland DG. Isolation of early hematopoietic stem cells from murine yolk sac and AGM. J Vis Exp. 2008:789. https://doi.org/10.3791/789.e789 .
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20.
pubmed: 29608179 pmcid: 6700744 doi: 10.1038/nbt.4096
Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019;20:296.
pubmed: 31870423 pmcid: 6927181 doi: 10.1186/s13059-019-1874-1
Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381–6.
pubmed: 24658644 pmcid: 4122333 doi: 10.1038/nbt.2859
Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids Res. 2009;37:W305–311.
pubmed: 19465376 pmcid: 2703978 doi: 10.1093/nar/gkp427
Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.
pubmed: 30944313 pmcid: 6447622 doi: 10.1038/s41467-019-09234-6
Onore CE, Careaga M, Babineau BA, Schwartzer JJ, Berman RF, Ashwood P. Inflammatory macrophage phenotype in BTBR T+tf/J mice. Front Neurosci. 2013;7:158.
pubmed: 24062633 pmcid: 3774991 doi: 10.3389/fnins.2013.00158
Schwartzer JJ, Onore CE, Rose D, Ashwood P. C57BL/6J bone marrow transplant increases sociability in BTBR T(+) Itpr3(tf)/J mice. Brain Behav Immun. 2017;59:55–61.
pubmed: 27235929 doi: 10.1016/j.bbi.2016.05.019
Gao X, Xu C, Asada N, Frenette PS. The hematopoietic stem cell niche: from embryo to adult. Development. 2018;145:dev139691.
Rybtsov S, Ivanovs A, Zhao S, Medvinsky A. Concealed expansion of immature precursors underpins acute burst of adult HSC activity in foetal liver. Development. 2016;143:1284–9.
pubmed: 27095492 pmcid: 4852516 doi: 10.1242/dev.131193
Zhou F, Li X, Wang W, Zhu P, Zhou J, He W, et al. Tracing haematopoietic stem cell formation at single-cell resolution. Nature. 2016;533:487–92.
pubmed: 27225119 doi: 10.1038/nature17997
Lancrin C, Sroczynska P, Stephenson C, Allen T, Kouskoff V, Lacaud G. The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature. 2009;457:892–5.
pubmed: 19182774 pmcid: 2661201 doi: 10.1038/nature07679
Oatley M, Bolukbasi OV, Svensson V, Shvartsman M, Ganter K, Zirngibl K, et al. Single-cell transcriptomics identifies CD44 as a marker and regulator of endothelial to haematopoietic transition. Nat Commun. 2020;11:586.
pubmed: 31996681 pmcid: 6989687 doi: 10.1038/s41467-019-14171-5
Baron CS, Kester L, Klaus A, Boisset JC, Thambyrajah R, Yvernogeau L, et al. Single-cell transcriptomics reveal the dynamic of haematopoietic stem cell production in the aorta. Nat Commun. 2018;9:2517.
pubmed: 29955049 pmcid: 6023921 doi: 10.1038/s41467-018-04893-3
Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature. 2009;457:887–91.
pubmed: 19129762 pmcid: 2744041 doi: 10.1038/nature07619
Swiers G, Baumann C, O’Rourke J, Giannoulatou E, Taylor S, Joshi A, et al. Early dynamic fate changes in haemogenic endothelium characterized at the single-cell level. Nat Commun. 2013;4:2924.
pubmed: 24326267 doi: 10.1038/ncomms3924
Huang HT, Kathrein KL, Barton A, Gitlin Z, Huang YH, Ward TP, et al. A network of epigenetic regulators guides developmental haematopoiesis in vivo. Nat cell Biol. 2013;15:1516–25.
pubmed: 24240475 pmcid: 3959952 doi: 10.1038/ncb2870
Zhang J, Kalkum M, Yamamura S, Chait BT, Roeder RG. E protein silencing by the leukemogenic AML1-ETO fusion protein. Science. 2004;305:1286–9.
pubmed: 15333839 doi: 10.1126/science.1097937
Nagarajan S, Rao SV, Sutton J, Cheeseman D, Dunn S, Papachristou EK, et al. ARID1A influences HDAC1/BRD4 activity, intrinsic proliferative capacity and breast cancer treatment response. Nat Genet. 2020;52:187–97.
pubmed: 31913353 pmcid: 7116647 doi: 10.1038/s41588-019-0541-5
Thambyrajah R, Fadlullah MZH, Proffitt M, Patel R, Cowley SM, Kouskoff V, et al. HDAC1 and HDAC2 modulate TGF-beta signaling during endothelial-to-hematopoietic transition. Stem Cell Rep. 2018;10:1369–83.
doi: 10.1016/j.stemcr.2018.03.011
Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015;518:547–51.
pubmed: 25470051 doi: 10.1038/nature13989
Sasagawa Y, Danno H, Takada H, Ebisawa M, Tanaka K, Hayashi T, et al. Quartz-Seq2: a high-throughput single-cell RNA-sequencing method that effectively uses limited sequence reads. Genome Biol. 2018;19:29.
pubmed: 29523163 pmcid: 5845169 doi: 10.1186/s13059-018-1407-3
Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ, et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell. 2014;159:1327–40.
pubmed: 25480297 pmcid: 4364385 doi: 10.1016/j.cell.2014.11.023
Gosselin D, Skola D, Coufal NG, Holtman IR, Schlachetzki JCM, Sajti E et al. An environment-dependent transcriptional network specifies human microglia identity. Science. 2017;356:eaal3222.
Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083–6.
pubmed: 28991892 pmcid: 5937676 doi: 10.1038/nmeth.4463
Rabouw HH, Visser LJ, Passchier TC, Langereis MA, Liu F, Giansanti P, et al. Inhibition of the integrated stress response by viral proteins that block p-eIF2-eIF2B association. Nat Microbiol. 2020;5:1361–73.
pubmed: 32690955 doi: 10.1038/s41564-020-0759-0
Eckschlager T, Plch J, Stiborova M, Hrabeta J. Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci. 2017;18:1414.
Kratsman N, Getselter D, Elliott E. Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model. Neuropharmacology. 2016;102:136–45.
pubmed: 26577018 doi: 10.1016/j.neuropharm.2015.11.003
Qin L, Ma K, Wang ZJ, Hu Z, Matas E, Wei J, et al. Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci. 2018;21:564–75.
pubmed: 29531362 pmcid: 5876144 doi: 10.1038/s41593-018-0110-8
Davie JR. Inhibition of histone deacetylase activity by butyrate. J Nutr. 2003;133:2485S–93S.
pubmed: 12840228 doi: 10.1093/jn/133.7.2485S
VanderMolen KM, McCulloch W, Pearce CJ, Oberlies NH. Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): a natural product recently approved for cutaneous T-cell lymphoma. J Antibiot. 2011;64:525–31.
doi: 10.1038/ja.2011.35
Baronio D, Bauer-Negrini G, Castro K, Della-Flora Nunes G, Riesgo R, Mendes-da-Cruz DA, et al. Reduced CD4 T lymphocytes in lymph nodes of the mouse model of autism induced by valproic acid. Neuroimmunomodulation. 2018;25:280–4.
pubmed: 30121669 doi: 10.1159/000491395
Nicolini C, Fahnestock M. The valproic acid-induced rodent model of autism. Exp Neurol. 2018;299(Pt A):217–27.
pubmed: 28472621 doi: 10.1016/j.expneurol.2017.04.017
Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331:337–41.
pubmed: 21205640 doi: 10.1126/science.1198469
Coretti L, Cristiano C, Florio E, Scala G, Lama A, Keller S, et al. Sex-related alterations of gut microbiota composition in the BTBR mouse model of autism spectrum disorder. Sci Rep. 2017;7:45356.
pubmed: 28349974 pmcid: 5368984 doi: 10.1038/srep45356
Needham BD, Tang W, Wu WL. Searching for the gut microbial contributing factors to social behavior in rodent models of autism spectrum disorder. Dev Neurobiol. 2018;78:474–99.
pubmed: 29411548 doi: 10.1002/dneu.22581
Cedar H, Bergman Y. Epigenetics of haematopoietic cell development. Nat Rev Immunol. 2011;11:478–88.
pubmed: 21660052 doi: 10.1038/nri2991
Gerstner T, Bell N, Longin E, Konig SA. Oral rapid loading of valproic acid-an alternative to the usual saturation scheme? Seizure. 2006;15:630–2.
pubmed: 17070075 doi: 10.1016/j.seizure.2006.09.005
Lee J, Sayed N, Hunter A, Au KF, Wong WH, Mocarski ES, et al. Activation of innate immunity is required for efficient nuclear reprogramming. Cell. 2012;151:547–58.
pubmed: 23101625 pmcid: 3506423 doi: 10.1016/j.cell.2012.09.034
Zhao M, Tan Y, Peng Q, Huang C, Guo Y, Liang G, et al. IL-6/STAT3 pathway induced deficiency of RFX1 contributes to Th17-dependent autoimmune diseases via epigenetic regulation. Nat Commun. 2018;9:583.
pubmed: 29422534 pmcid: 5805701 doi: 10.1038/s41467-018-02890-0
Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah IN, Van de Water J. Altered T cell responses in children with autism. Brain, Behav, Immun. 2011;25:840–9.
pubmed: 20833247 doi: 10.1016/j.bbi.2010.09.002
Coretti L, Paparo L, Riccio MP, Amato F, Cuomo M, Natale A, et al. Gut microbiota features in young children with autism spectrum disorders. Front Microbiol. 2018;9:3146.
pubmed: 30619212 pmcid: 6305749 doi: 10.3389/fmicb.2018.03146
Ivanovs A, Rybtsov S, Ng ES, Stanley EG, Elefanty AG, Medvinsky A. Human haematopoietic stem cell development: from the embryo to the dish. Development. 2017;144:2323–37.
pubmed: 28676567 doi: 10.1242/dev.134866
Bezawada N, Phang TH, Hold GL, Hansen R. Autism spectrum disorder and the gut microbiota in children: a systematic review. Ann Nutr Metab. 2020;76:16–29.
pubmed: 31982866 doi: 10.1159/000505363
Sgritta M, Dooling SW, Buffington SA, Momin EN, Francis MB, Britton RA, et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron. 2019;101:246–259 e246.
pubmed: 30522820 doi: 10.1016/j.neuron.2018.11.018
Silverman JL, Yang M, Lord C, Crawley JN. Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci. 2010;11:490–502.
pubmed: 20559336 pmcid: 3087436 doi: 10.1038/nrn2851
Buffington SA, Di Prisco GV, Auchtung TA, Ajami NJ, Petrosino JF, Costa-Mattioli M. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell. 2016;165:1762–75.
pubmed: 27315483 pmcid: 5102250 doi: 10.1016/j.cell.2016.06.001
Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA. 2010;107:12204–9.
pubmed: 20566854 pmcid: 2901479 doi: 10.1073/pnas.0909122107

Auteurs

Chia-Wen Lin (CW)

Laboratory for Mental Biology, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan.
Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.

Dian E Septyaningtrias (DE)

Laboratory for Mental Biology, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan.

Hsu-Wen Chao (HW)

Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.

Mikiko Konda (M)

Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan.

Koji Atarashi (K)

Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan.
RIKEN Center for Integrative Medical Sciences, Tsurumi, Yokohama, 230-0045, Japan.

Kozue Takeshita (K)

Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan.

Kota Tamada (K)

Laboratory for Mental Biology, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan.
Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0017, Japan.

Jun Nomura (J)

Laboratory for Mental Biology, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan.
Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0017, Japan.

Yohei Sasagawa (Y)

Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, 351-0198, Japan.
Functional Genome Informatics, Division of Medical Genomics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8510, Japan.

Kaori Tanaka (K)

Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, 351-0198, Japan.
Functional Genome Informatics, Division of Medical Genomics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8510, Japan.
Master's/Doctoral Program in Life Science Innovation (Bioinformatics), Degree Programs in Systems and Information Engineering, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.

Itoshi Nikaido (I)

Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, 351-0198, Japan.
Functional Genome Informatics, Division of Medical Genomics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8510, Japan.
Master's/Doctoral Program in Life Science Innovation (Bioinformatics), Degree Programs in Systems and Information Engineering, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.

Kenya Honda (K)

Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan.
RIKEN Center for Integrative Medical Sciences, Tsurumi, Yokohama, 230-0045, Japan.

Thomas J McHugh (TJ)

Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.

Toru Takumi (T)

Laboratory for Mental Biology, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan. takumit@med.kobe-u.ac.jp.
Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0017, Japan. takumit@med.kobe-u.ac.jp.
RIKEN Center for Biosystems Dynamics Research, Chuo, Kobe, 650-0047, Japan. takumit@med.kobe-u.ac.jp.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH