Construction of Integrated Electrodes with Transport Highways for Pure-Water-Fed Anion Exchange Membrane Water Electrolysis.

anion exchange membranes integrated electrodes ionomers water electrolysis

Journal

Small (Weinheim an der Bergstrasse, Germany)
ISSN: 1613-6829
Titre abrégé: Small
Pays: Germany
ID NLM: 101235338

Informations de publication

Date de publication:
05 2022
Historique:
revised: 28 03 2022
received: 18 01 2022
pubmed: 3 5 2022
medline: 28 5 2022
entrez: 2 5 2022
Statut: ppublish

Résumé

The design of high-performance and durable electrodes for the oxygen evolution reaction (OER) is crucial for pure-water-fed anion exchange membrane water electrolysis (AEMWE). In this study, an integrated electrode with vertically aligned ionomer-incorporated nickel-iron layered double hydroxide nanosheet arrays, used on one side of the liquid/gas diffusion layer, is fabricated for the OER. Transport highways in the fabricated integrated electrode, significantly improve the transport of liquid/gas, hydroxide ions, and electron in the anode, resulting in a high current density of 1900 mA cm

Identifiants

pubmed: 35491509
doi: 10.1002/smll.202200380
doi:

Substances chimiques

Hydroxides 0
Water 059QF0KO0R
Oxygen S88TT14065

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2200380

Informations de copyright

© 2022 Wiley-VCH GmbH.

Références

a) J. M. Serra, J. F. Borrás-Morell, B. García-Baños, M. Balaguer, P. Plaza-González, J. Santos-Blasco, D. Catalán-Martínez, L. Navarrete, J. M. Catalá-Civera, Nat. Energy 2020, 5, 910;
b) L. Wan, Z. Xu, P. Wang, Y. Lin, B. Wang, J. Membr. Sci. 2021, 618, 118642;
c) L. Wan, Z. Xu, B. Wang, Chem. Eng. J. 2021, 426.
R. Abbasi, B. P. Setzler, S. Lin, J. Wang, Y. Zhao, H. Xu, B. Pivovar, B. Tian, X. Chen, G. Wu, Y. Yan, Adv. Mater. 2019, 31, 1805876.
M. R. Kraglund, M. Carmo, G. Schiller, S. A. Ansar, D. Aili, E. Christensen, J. O. Jensen, Energy Environ. Sci. 2019, 12, 3313.
C. Klose, T. Saatkamp, A. Münchinger, L. Bohn, G. Titvinidze, M. Breitwieser, K. D. Kreuer, S. Vierrath, Adv. Energy Mater. 2020, 10, 1903995.
S. Stiber, N. Sata, T. Morawietz, S. A. Ansar, T. Jahnke, J. K. Lee, A. Bazylak, A. Fallisch, A. S. Gago, K. A. Friedrich, Energy Environ. Sci. 2021, 15, 109.
a) J.-C. Kim, J. Kim, J. C. Park, S. H. Ahn, D.-W. Kim, Chem. Eng. J. 2021, 420, 130491;
b) J. W. Lee, J. H. Lee, C. Lee, H.-S. Cho, M. Kim, S.-K. Kim, J. H. Joo, W.-C. Cho, C.-H. Kim, Chem. Eng. J. 2022, 428, 131149;
c) P. Chen, X. Hu, Adv. Energy Mater. 2020, 10, 2002285;
d) A. Meena, P. Thangavel, D. S. Jeong, A. N. Singh, A. Jana, H. Im, D. A. Nguyen, K. S. Kim, Appl. Catal., B 2022, 306, 121127;
e) P. Thangavel, G. Kim, K. S. Kim, J. Mater. Chem. A 2021, 9, 14043;
f) J. Abed, S. Ahmadi, L. Laverdure, A. Abdellah, C. P. O'Brien, K. Cole, P. Sobrinho, D. Sinton, D. Higgins, N. J. Mosey, S. J. Thorpe, E. H. Sargent, Adv. Mater. 2021, 33, e2103812;
g)L. Wan, Z. Xu, Q. Xu, P. Wang, B. Wang, Energy Environ. Sci. 2022, https://doi.org/10.1039/d2ee00273f.
P. Thangavel, M. Ha, S. Kumaraguru, A. Meena, A. N. Singh, A. M. Harzandi, K. S. Kim, Energy Environ. Sci. 2020, 13, 3447.
G. A. Lindquist, S. Z. Oener, R. Krivina, A. R. Motz, A. Keane, C. Capuano, K. E. Ayers, S. W. Boettcher, ACS Appl. Mater. Interfaces 2021, 13, 51917.
K. Li, S. Yu, D. Li, L. Ding, W. Wang, Z. Xie, E. J. Park, C. Fujimoto, D. A. Cullen, Y. S. Kim, F. Y. Zhang, ACS Appl. Mater. Interfaces 2021, 13, 50957.
G. Merle, M. Wessling, K. Nijmeijer, J. Membr. Sci. 2011, 377, 1.
S.-Q. Liu, E. Shahini, M.-R. Gao, L. Gong, P.-F. Sui, T. Tang, H. Zeng, J.-L. Luo, ACS Nano 2021, 15, 17757.
M. Qi, Y. Zeng, M. Hou, Y. Gou, W. Song, H. Chen, G. Wu, Z. Jia, Y. Gao, H. Zhang, Z. Shao, Appl. Catal., B 2021, 298, 120504.
M. Mandal, M. Moore, M. Secanell, ACS Appl. Mater. Interfaces 2020, 12, 49549.
Y. Zeng, H. Zhang, Z. Wang, J. Jia, S. Miao, W. Song, Y. Xiao, H. Yu, Z. Shao, B. Yi, J. Mater. Chem. A 2018, 6, 6521.
J. E. Park, S. Park, M.-J Kim, H. Shin, S. Y. Kang, Y.-H. Cho, Y.-E. Sung, ACS Catal. 2022, 12, 135;
b) Q. Xu, S. Z. Oener, G. Lindquist, H. Jiang, C. Li, S. W. Boettcher, ACS Energy Lett. 2020, 6, 305.
a) H. Sun, Z. Yan, F. Liu, W. Xu, F. Cheng, J. Chen, Adv. Mater. 2020, 32, e1806326;
b) H. Yang, M. Driess, P. W. Menezes, Adv. Energy Mater. 2021, 11, 2102074
a) J. Lee, H. Jung, Y. S. Park, S. Woo, J. Yang, M. J. Jang, J. Jeong, N. Kwon, B. Lim, J. W. Han, S. M. Choi, Small 2021, 17, e2100639;
b) J. Xiao, A. M. Oliveira, L. Wang, Y. Zhao, T. Wang, J. Wang, B. P. Setzler, Y. Yan, ACS Catal. 2020, 11, 264.
J. Lee, H. Jung, Y. S. Park, S. Woo, N. Kwon, Y. Xing, S. H. Oh, S. M. Choi, J. W. Han, B. Lim, Chem. Eng. J. 2021, 420.
N. Chen, S. Y. Paek, J. Y. Lee, J. H. Park, S. Y. Lee, Y. M. Lee, Energy Environ. Sci. 2021, 14, 6338.
D. Li, E. J. Park, W. Zhu, Q. Shi, Y. Zhou, H. Tian, Y. Lin, A. Serov, B. Zulevi, E. D. Baca, C. Fujimoto, H. T. Chung, Y. S. Kim, Nat. Energy 2020, 5, 378.
Z. Yan, H. Liu, Z. Hao, M. Yu, X. Chen, J. Chen, Chem. Sci. 2020, 11, 10614.
C. Li, Z. Zhang, R. Liu, Small 2020, 16, 2003777.
F. Zheng, W. Zhang, X. Zhang, Y. Zhang, W. Chen, Adv. Funct. Mater. 2021, 31, 2103318.
I. Baranov, S. Grigoriev, D. Ylitalo, V. Fateev, I. Nikolaev, Int. J. Hydrogen Energy 2006, 31, 203.
J. Chi, H. Yu, B. Qin, L. Fu, J. Jia, B. Yi, Z. Shao, ACS Appl. Mater. Interfaces 2017, 9, 464.
S.-H. Bae, J.-E. Kim, H. Randriamahazaka, S.-Y. Moon, J.-Y. Park, I.-K. Oh, Adv. Energy Mater. 2017, 7, 1601492.
H. Ren, Y. Teng, X. Meng, D. Fang, H. Huang, J. Geng, Z. Shao, J. Power Sources 2021, 506, 230186.
a) S. Anantharaj, S. R. Ede, K. Karthick, S. Sam Sankar, K. Sangeetha, P. E. Karthik, S. Kundu, Energy Environ. Sci. 2018, 11, 744;
b) L. Yu, Z. Ren, Mater. Today Phys. 2020, 14, 100253.
T. J. Peican Wang, B. Wang, J. Power Sources 2020, 474, 228621.
J. Sun, F. Tian, F. Yu, Z. Yang, B. Yu, S. Chen, Z. Ren, H. Zhou, ACS Catal. 2019, 10, 1511.
P. Wang, B. Wang, ChemSusChem 2020, 13, 4795.
J. Kim, A. P. Tiwari, C. Qin, T. G. Novak, J. Lee, J. Kim, M. Park, J.-K. Kim, S. Jeon, ACS Sustainable Chem. Eng. 2021, 9, 10326.
a) L. Wan, Z. Xu, P. Wang, P.-F. Liu, Q. Xu, B. Wang, Chem. Eng. J. 2022, 431, 133942;
b) L. Jiang, N. Yang, C. Yang, X. Zhu, Y. Jiang, X. Shen, C. Li, Q. Sun, Appl. Catal., B 2020, 269, 118780.
Y. Huang, M. Liu, J. Wang, J. Zhou, L. Wang, Y. Song, L. Jiang, Adv. Funct. Mater. 2011, 21, 4436.
E. López-Fernández, C. Gómez-Sacedón, J. Gil-Rostra, J. P. Espinós, A. R. González-Elipe, F. Yubero, A. de Lucas-Consuegra, Chem. Eng. J. 2021, 433, 133774.
F. Razmjooei, T. Morawietz, E. Taghizadeh, E. Hadjixenophontos, L. Mues, M. Gerle, B. D. Wood, C. Harms, A. S. Gago, S. A. Ansar, K. A. Friedrich, Joule 2021, 5, 1776.
a) R. Soni, S. Miyanishi, H. Kuroki, T. Yamaguchi, ACS Appl. Energy Mater. 2020, 4, 1053;
b) Y. S. Kim, ACS Appl. Polym. Mater. 2021, 3, 1250.
J. Liu, Z. Kang, D. Li, M. Pak, S. M. Alia, C. Fujimoto, G. Bender, Y. S. Kim, A. Z. Weber, J. Electrochem. Soc. 2021, 168.
M. Bernt, H. A. Gasteiger, J. Electrochem. Soc. 2016, 163, F3179.
a) P. Benalcazar, A. Komorowska, Int. J. Hydrogen Energy 2022, 47, 5779;
b) A. Hodges, A. L. Hoang, G. Tsekouras, K. Wagner, C. Y. Lee, G. F. Swiegers, G. G. Wallace, Nat. Commun. 2022, 13, 1304.

Auteurs

Lei Wan (L)

The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, No.30 Shuang-Qing Road, Hai-Dian District, Beijing, 100084, P.R. China.

Jing Liu (J)

The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, No.30 Shuang-Qing Road, Hai-Dian District, Beijing, 100084, P.R. China.

Ziang Xu (Z)

The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, No.30 Shuang-Qing Road, Hai-Dian District, Beijing, 100084, P.R. China.

Qin Xu (Q)

The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, No.30 Shuang-Qing Road, Hai-Dian District, Beijing, 100084, P.R. China.

Maobin Pang (M)

The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, No.30 Shuang-Qing Road, Hai-Dian District, Beijing, 100084, P.R. China.

Peican Wang (P)

The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, No.30 Shuang-Qing Road, Hai-Dian District, Beijing, 100084, P.R. China.

Baoguo Wang (B)

The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, No.30 Shuang-Qing Road, Hai-Dian District, Beijing, 100084, P.R. China.

Articles similaires

Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
Silicon Dioxide Water Hot Temperature Compressive Strength X-Ray Diffraction
1.00
Oryza Agricultural Irrigation Potassium Sodium Soil
Humans Electroencephalography Female Male Middle Aged

Classifications MeSH