Construction of Integrated Electrodes with Transport Highways for Pure-Water-Fed Anion Exchange Membrane Water Electrolysis.
anion exchange membranes
integrated electrodes
ionomers
water electrolysis
Journal
Small (Weinheim an der Bergstrasse, Germany)
ISSN: 1613-6829
Titre abrégé: Small
Pays: Germany
ID NLM: 101235338
Informations de publication
Date de publication:
05 2022
05 2022
Historique:
revised:
28
03
2022
received:
18
01
2022
pubmed:
3
5
2022
medline:
28
5
2022
entrez:
2
5
2022
Statut:
ppublish
Résumé
The design of high-performance and durable electrodes for the oxygen evolution reaction (OER) is crucial for pure-water-fed anion exchange membrane water electrolysis (AEMWE). In this study, an integrated electrode with vertically aligned ionomer-incorporated nickel-iron layered double hydroxide nanosheet arrays, used on one side of the liquid/gas diffusion layer, is fabricated for the OER. Transport highways in the fabricated integrated electrode, significantly improve the transport of liquid/gas, hydroxide ions, and electron in the anode, resulting in a high current density of 1900 mA cm
Identifiants
pubmed: 35491509
doi: 10.1002/smll.202200380
doi:
Substances chimiques
Hydroxides
0
Water
059QF0KO0R
Oxygen
S88TT14065
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2200380Informations de copyright
© 2022 Wiley-VCH GmbH.
Références
a) J. M. Serra, J. F. Borrás-Morell, B. García-Baños, M. Balaguer, P. Plaza-González, J. Santos-Blasco, D. Catalán-Martínez, L. Navarrete, J. M. Catalá-Civera, Nat. Energy 2020, 5, 910;
b) L. Wan, Z. Xu, P. Wang, Y. Lin, B. Wang, J. Membr. Sci. 2021, 618, 118642;
c) L. Wan, Z. Xu, B. Wang, Chem. Eng. J. 2021, 426.
R. Abbasi, B. P. Setzler, S. Lin, J. Wang, Y. Zhao, H. Xu, B. Pivovar, B. Tian, X. Chen, G. Wu, Y. Yan, Adv. Mater. 2019, 31, 1805876.
M. R. Kraglund, M. Carmo, G. Schiller, S. A. Ansar, D. Aili, E. Christensen, J. O. Jensen, Energy Environ. Sci. 2019, 12, 3313.
C. Klose, T. Saatkamp, A. Münchinger, L. Bohn, G. Titvinidze, M. Breitwieser, K. D. Kreuer, S. Vierrath, Adv. Energy Mater. 2020, 10, 1903995.
S. Stiber, N. Sata, T. Morawietz, S. A. Ansar, T. Jahnke, J. K. Lee, A. Bazylak, A. Fallisch, A. S. Gago, K. A. Friedrich, Energy Environ. Sci. 2021, 15, 109.
a) J.-C. Kim, J. Kim, J. C. Park, S. H. Ahn, D.-W. Kim, Chem. Eng. J. 2021, 420, 130491;
b) J. W. Lee, J. H. Lee, C. Lee, H.-S. Cho, M. Kim, S.-K. Kim, J. H. Joo, W.-C. Cho, C.-H. Kim, Chem. Eng. J. 2022, 428, 131149;
c) P. Chen, X. Hu, Adv. Energy Mater. 2020, 10, 2002285;
d) A. Meena, P. Thangavel, D. S. Jeong, A. N. Singh, A. Jana, H. Im, D. A. Nguyen, K. S. Kim, Appl. Catal., B 2022, 306, 121127;
e) P. Thangavel, G. Kim, K. S. Kim, J. Mater. Chem. A 2021, 9, 14043;
f) J. Abed, S. Ahmadi, L. Laverdure, A. Abdellah, C. P. O'Brien, K. Cole, P. Sobrinho, D. Sinton, D. Higgins, N. J. Mosey, S. J. Thorpe, E. H. Sargent, Adv. Mater. 2021, 33, e2103812;
g)L. Wan, Z. Xu, Q. Xu, P. Wang, B. Wang, Energy Environ. Sci. 2022, https://doi.org/10.1039/d2ee00273f.
P. Thangavel, M. Ha, S. Kumaraguru, A. Meena, A. N. Singh, A. M. Harzandi, K. S. Kim, Energy Environ. Sci. 2020, 13, 3447.
G. A. Lindquist, S. Z. Oener, R. Krivina, A. R. Motz, A. Keane, C. Capuano, K. E. Ayers, S. W. Boettcher, ACS Appl. Mater. Interfaces 2021, 13, 51917.
K. Li, S. Yu, D. Li, L. Ding, W. Wang, Z. Xie, E. J. Park, C. Fujimoto, D. A. Cullen, Y. S. Kim, F. Y. Zhang, ACS Appl. Mater. Interfaces 2021, 13, 50957.
G. Merle, M. Wessling, K. Nijmeijer, J. Membr. Sci. 2011, 377, 1.
S.-Q. Liu, E. Shahini, M.-R. Gao, L. Gong, P.-F. Sui, T. Tang, H. Zeng, J.-L. Luo, ACS Nano 2021, 15, 17757.
M. Qi, Y. Zeng, M. Hou, Y. Gou, W. Song, H. Chen, G. Wu, Z. Jia, Y. Gao, H. Zhang, Z. Shao, Appl. Catal., B 2021, 298, 120504.
M. Mandal, M. Moore, M. Secanell, ACS Appl. Mater. Interfaces 2020, 12, 49549.
Y. Zeng, H. Zhang, Z. Wang, J. Jia, S. Miao, W. Song, Y. Xiao, H. Yu, Z. Shao, B. Yi, J. Mater. Chem. A 2018, 6, 6521.
J. E. Park, S. Park, M.-J Kim, H. Shin, S. Y. Kang, Y.-H. Cho, Y.-E. Sung, ACS Catal. 2022, 12, 135;
b) Q. Xu, S. Z. Oener, G. Lindquist, H. Jiang, C. Li, S. W. Boettcher, ACS Energy Lett. 2020, 6, 305.
a) H. Sun, Z. Yan, F. Liu, W. Xu, F. Cheng, J. Chen, Adv. Mater. 2020, 32, e1806326;
b) H. Yang, M. Driess, P. W. Menezes, Adv. Energy Mater. 2021, 11, 2102074
a) J. Lee, H. Jung, Y. S. Park, S. Woo, J. Yang, M. J. Jang, J. Jeong, N. Kwon, B. Lim, J. W. Han, S. M. Choi, Small 2021, 17, e2100639;
b) J. Xiao, A. M. Oliveira, L. Wang, Y. Zhao, T. Wang, J. Wang, B. P. Setzler, Y. Yan, ACS Catal. 2020, 11, 264.
J. Lee, H. Jung, Y. S. Park, S. Woo, N. Kwon, Y. Xing, S. H. Oh, S. M. Choi, J. W. Han, B. Lim, Chem. Eng. J. 2021, 420.
N. Chen, S. Y. Paek, J. Y. Lee, J. H. Park, S. Y. Lee, Y. M. Lee, Energy Environ. Sci. 2021, 14, 6338.
D. Li, E. J. Park, W. Zhu, Q. Shi, Y. Zhou, H. Tian, Y. Lin, A. Serov, B. Zulevi, E. D. Baca, C. Fujimoto, H. T. Chung, Y. S. Kim, Nat. Energy 2020, 5, 378.
Z. Yan, H. Liu, Z. Hao, M. Yu, X. Chen, J. Chen, Chem. Sci. 2020, 11, 10614.
C. Li, Z. Zhang, R. Liu, Small 2020, 16, 2003777.
F. Zheng, W. Zhang, X. Zhang, Y. Zhang, W. Chen, Adv. Funct. Mater. 2021, 31, 2103318.
I. Baranov, S. Grigoriev, D. Ylitalo, V. Fateev, I. Nikolaev, Int. J. Hydrogen Energy 2006, 31, 203.
J. Chi, H. Yu, B. Qin, L. Fu, J. Jia, B. Yi, Z. Shao, ACS Appl. Mater. Interfaces 2017, 9, 464.
S.-H. Bae, J.-E. Kim, H. Randriamahazaka, S.-Y. Moon, J.-Y. Park, I.-K. Oh, Adv. Energy Mater. 2017, 7, 1601492.
H. Ren, Y. Teng, X. Meng, D. Fang, H. Huang, J. Geng, Z. Shao, J. Power Sources 2021, 506, 230186.
a) S. Anantharaj, S. R. Ede, K. Karthick, S. Sam Sankar, K. Sangeetha, P. E. Karthik, S. Kundu, Energy Environ. Sci. 2018, 11, 744;
b) L. Yu, Z. Ren, Mater. Today Phys. 2020, 14, 100253.
T. J. Peican Wang, B. Wang, J. Power Sources 2020, 474, 228621.
J. Sun, F. Tian, F. Yu, Z. Yang, B. Yu, S. Chen, Z. Ren, H. Zhou, ACS Catal. 2019, 10, 1511.
P. Wang, B. Wang, ChemSusChem 2020, 13, 4795.
J. Kim, A. P. Tiwari, C. Qin, T. G. Novak, J. Lee, J. Kim, M. Park, J.-K. Kim, S. Jeon, ACS Sustainable Chem. Eng. 2021, 9, 10326.
a) L. Wan, Z. Xu, P. Wang, P.-F. Liu, Q. Xu, B. Wang, Chem. Eng. J. 2022, 431, 133942;
b) L. Jiang, N. Yang, C. Yang, X. Zhu, Y. Jiang, X. Shen, C. Li, Q. Sun, Appl. Catal., B 2020, 269, 118780.
Y. Huang, M. Liu, J. Wang, J. Zhou, L. Wang, Y. Song, L. Jiang, Adv. Funct. Mater. 2011, 21, 4436.
E. López-Fernández, C. Gómez-Sacedón, J. Gil-Rostra, J. P. Espinós, A. R. González-Elipe, F. Yubero, A. de Lucas-Consuegra, Chem. Eng. J. 2021, 433, 133774.
F. Razmjooei, T. Morawietz, E. Taghizadeh, E. Hadjixenophontos, L. Mues, M. Gerle, B. D. Wood, C. Harms, A. S. Gago, S. A. Ansar, K. A. Friedrich, Joule 2021, 5, 1776.
a) R. Soni, S. Miyanishi, H. Kuroki, T. Yamaguchi, ACS Appl. Energy Mater. 2020, 4, 1053;
b) Y. S. Kim, ACS Appl. Polym. Mater. 2021, 3, 1250.
J. Liu, Z. Kang, D. Li, M. Pak, S. M. Alia, C. Fujimoto, G. Bender, Y. S. Kim, A. Z. Weber, J. Electrochem. Soc. 2021, 168.
M. Bernt, H. A. Gasteiger, J. Electrochem. Soc. 2016, 163, F3179.
a) P. Benalcazar, A. Komorowska, Int. J. Hydrogen Energy 2022, 47, 5779;
b) A. Hodges, A. L. Hoang, G. Tsekouras, K. Wagner, C. Y. Lee, G. F. Swiegers, G. G. Wallace, Nat. Commun. 2022, 13, 1304.