A Dosimetric Study Comparing 3D-CRT vs. IMRT vs. VMAT in Left-Sided Breast Cancer Patients After Mastectomy at a Tertiary Care Centre in Eastern India.
3d- conformal radiation therapy
dosimetry plan
imrt
intensity modulated radiotherapy
left breast cancer
mastectomy
radiotherapy (rt)
tangential intensity modulated radiotherapy
vmat
volumetric-modulated arc therapy
Journal
Cureus
ISSN: 2168-8184
Titre abrégé: Cureus
Pays: United States
ID NLM: 101596737
Informations de publication
Date de publication:
Mar 2022
Mar 2022
Historique:
accepted:
28
03
2022
entrez:
2
5
2022
pubmed:
3
5
2022
medline:
3
5
2022
Statut:
epublish
Résumé
Introduction Post-mastectomy radiation in left-sided breast cancer in women continues to pose a significant risk to the underlying lungs and heart. This study analyzed the difference in planning target volume (PTV) coverage and dose to the organs at risk (OAR) by using three different planning methods for the same patient - three-dimensional conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), and volumetric-modulated arc therapy (VMAT). Material and methods Thirty-five left-sided breast cancer patients' post-mastectomy were included in this study, and three different plans for adjuvant radiation were created using 3D-CRT, IMRT, and VMAT. The prescribed dose was 50Gy in 25 fractions. Kruskal-Wallis analysis of variance (ANOVA) was done, followed by a pairwise t-test to establish a hierarchy of plan quality and dosimetric benefits. The plans were compared with PTV
Identifiants
pubmed: 35494897
doi: 10.7759/cureus.23568
pmc: PMC9045011
doi:
Types de publication
Journal Article
Langues
eng
Pagination
e23568Informations de copyright
Copyright © 2022, Das Majumdar et al.
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Radiat Oncol. 2015 Nov 17;10:231
pubmed: 26577189
Int J Radiat Oncol Biol Phys. 2007 Jul 15;68(4):1004-9
pubmed: 17418973
Radiat Oncol. 2010 Oct 29;5:99
pubmed: 21034456
Int J Radiat Oncol Biol Phys. 1993 Apr 30;26(1):171-9
pubmed: 8482624
Radiat Oncol. 2014 Feb 26;9:66
pubmed: 24571913
Radiat Oncol J. 2018 Mar;36(1):71-78
pubmed: 29621872
J Radiat Res. 2012;53(1):151-3
pubmed: 22240941
Br J Cancer. 2010 Jan 5;102(1):220-6
pubmed: 19935795
Int J Radiat Biol. 1992 Aug;62(2):249-62
pubmed: 1355519
N Engl J Med. 2015 Jul 23;373(4):317-27
pubmed: 26200978
Int J Radiat Oncol Biol Phys. 2003 May 1;56(1):83-8
pubmed: 12694826
J Cancer Res Ther. 2018 Jul-Sep;14(5):1005-1009
pubmed: 30197339
Lancet. 2014 Jun 21;383(9935):2127-35
pubmed: 24656685
Radiat Oncol J. 2020 Dec;38(4):270-281
pubmed: 33389982
Int J Radiat Oncol Biol Phys. 1999 Sep 1;45(2):323-9
pubmed: 10487552
J Appl Clin Med Phys. 2019 Dec;20(12):36-44
pubmed: 31680445
Med Phys. 2008 Jan;35(1):310-7
pubmed: 18293586
Acta Oncol. 2013 May;52(4):703-10
pubmed: 23421926
Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S77-85
pubmed: 20171522
Int J Radiat Oncol Biol Phys. 1991 May 15;21(1):123-35
pubmed: 2032883
Sci Rep. 2015 Jul 21;5:12274
pubmed: 26194593
N Engl J Med. 2015 Jul 23;373(4):307-16
pubmed: 26200977
Strahlenther Onkol. 2012 Jun;188(6):484-90
pubmed: 22402870
N Engl J Med. 2013 Mar 14;368(11):987-98
pubmed: 23484825
Radiother Oncol. 2011 Aug;100(2):241-6
pubmed: 21316783