Mitoapocynin Attenuates Organic Dust Exposure-Induced Neuroinflammation and Sensory-Motor Deficits in a Mouse Model.

inflammation microglia mitoapocynin neurodegeneration organic dust

Journal

Frontiers in cellular neuroscience
ISSN: 1662-5102
Titre abrégé: Front Cell Neurosci
Pays: Switzerland
ID NLM: 101477935

Informations de publication

Date de publication:
2022
Historique:
received: 17 11 2021
accepted: 14 03 2022
entrez: 2 5 2022
pubmed: 3 5 2022
medline: 3 5 2022
Statut: epublish

Résumé

Increased incidences of neuro-inflammatory diseases in the mid-western United States of America (USA) have been linked to exposure to agriculture contaminants. Organic dust (OD) is a major contaminant in the animal production industry and is central to the respiratory symptoms in the exposed individuals. However, the exposure effects on the brain remain largely unknown. OD exposure is known to induce a pro-inflammatory phenotype in microglial cells. Further, blocking cytoplasmic NOX-2 using mitoapocynin (MA) partially curtail the OD exposure effects. Therefore, using a mouse model, we tested a hypothesis that inhaled OD induces neuroinflammation and sensory-motor deficits. Mice were administered with either saline, fluorescent lipopolysaccharides (LPSs), or OD extract intranasally daily for 5 days a week for 5 weeks. The saline or OD extract-exposed mice received either a vehicle or MA (3 mg/kg) orally for 3 days/week for 5 weeks. We quantified inflammatory changes in the upper respiratory tract and brain, assessed sensory-motor changes using rotarod, open-field, and olfactory test, and quantified neurochemicals in the brain. Inhaled fluorescent LPS (FL-LPS) was detected in the nasal turbinates and olfactory bulbs. OD extract exposure induced atrophy of the olfactory epithelium with reduction in the number of nerve bundles in the nasopharyngeal meatus, loss of cilia in the upper respiratory epithelium with an increase in the number of goblet cells, and increase in the thickness of the nasal epithelium. Interestingly, OD exposure increased the expression of HMGB1, 3- nitrotyrosine (NT), IBA1, glial fibrillary acidic protein (GFAP), hyperphosphorylated Tau (p-Tau), and terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL)-positive cells in the brain. Further, OD exposure decreased time to fall (rotarod), total distance traveled (open-field test), and olfactory ability (novel scent test). Oral MA partially rescued olfactory epithelial changes and gross congestion of the brain tissue. MA treatment also decreased the expression of HMGB1, 3-NT, IBA1, GFAP, and p-Tau, and significantly reversed exposure induced sensory-motor deficits. Neurochemical analysis provided an early indication of depressive behavior. Collectively, our results demonstrate that inhalation exposure to OD can cause sustained neuroinflammation and behavior deficits through lung-brain axis and that MA treatment can dampen the OD-induced inflammatory response at the level of lung and brain.

Identifiants

pubmed: 35496912
doi: 10.3389/fncel.2022.817046
pmc: PMC9043522
doi:

Types de publication

Journal Article

Langues

eng

Pagination

817046

Subventions

Organisme : NIEHS NIH HHS
ID : R01 ES026892
Pays : United States
Organisme : NIEHS NIH HHS
ID : R01 ES027245
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS100090
Pays : United States

Informations de copyright

Copyright © 2022 Massey, Shrestha, Bhat, Padhi, Wang, Karriker, Smith, Kanthasamy and Charavaryamath.

Déclaration de conflit d'intérêts

AK is a shareholder of PK Biosciences Corporation Ames, IA, which is interested in identifying novel biomarkers and potential therapeutic targets for Parkinson's disease. The remaining authors declare that they have no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Références

NPJ Parkinsons Dis. 2017 Oct 17;3:30
pubmed: 29057315
Neurotoxicology. 2012 Aug;33(4):838-41
pubmed: 22178536
J Neuroimmune Pharmacol. 2016 Jun;11(2):259-78
pubmed: 26838361
Respir Res. 2019 Feb 6;20(1):27
pubmed: 30728013
Am J Pathol. 1996 Mar;148(3):889-96
pubmed: 8774143
Neuroepidemiology. 2010;34(3):143-51
pubmed: 20090375
Am J Physiol Gastrointest Liver Physiol. 2021 Apr 1;320(4):G586-G600
pubmed: 33501887
Curr Alzheimer Res. 2010 Dec;7(8):656-64
pubmed: 20678074
Autoimmun Rev. 2005 Apr;4(4):224-9
pubmed: 15893716
Transl Psychiatry. 2017 Jan 31;7(1):e1022
pubmed: 28140404
J Nanosci Nanotechnol. 2009 Aug;9(8):4996-5007
pubmed: 19928180
Environ Health Perspect. 2011 Aug;119(8):1149-55
pubmed: 21561831
Am J Physiol Lung Cell Mol Physiol. 2009 Jun;296(6):L1085-95
pubmed: 19395665
Respir Res. 2005 Jun 02;6:50
pubmed: 15932644
J Neurosci. 2005 Aug 3;25(31):7139-49
pubmed: 16079396
Am J Vet Res. 1984 May;45(5):926-31
pubmed: 6732025
Front Neurosci. 2019 Nov 21;13:1232
pubmed: 31824243
Behav Neurol. 2018 Jul 25;2018:4935915
pubmed: 30147810
J Clin Invest. 2020 Aug 3;130(8):4195-4212
pubmed: 32597830
J Alzheimers Dis. 2012;28(1):93-107
pubmed: 21955814
Pharmaceutics. 2021 Nov 10;13(11):
pubmed: 34834319
Chest. 2017 Sep;152(3):618-626
pubmed: 28336486
Antioxid Redox Signal. 2017 Nov 10;27(14):1048-1066
pubmed: 28375739
Curr Opin Allergy Clin Immunol. 2015 Apr;15(2):137-44
pubmed: 25636160
Res Rep Health Eff Inst. 2017 Oct;(193):1-65
pubmed: 31898881
J Vet Sci. 2018 May 31;19(3):319-330
pubmed: 29032655
J Neurosci. 2008 Mar 5;28(10):2471-84
pubmed: 18322092
Glia. 2013 Jan;61(1):104-11
pubmed: 22987512
Cell Tissue Res. 2021 May;384(2):465-486
pubmed: 33687557
J Vis Exp. 2013 Apr 08;(74):
pubmed: 23608783
Curr Allergy Asthma Rep. 2018 Oct 5;18(12):65
pubmed: 30291457
Ecotoxicol Environ Saf. 2019 Jan 30;168:338-347
pubmed: 30391838
Exp Lung Res. 2008 Jan;34(1):19-35
pubmed: 18205075
Neurotoxicology. 2018 Jan;64:240-255
pubmed: 28595911
Prog Brain Res. 1992;94:353-65
pubmed: 1337615
Adv Protein Chem Struct Biol. 2017;107:37-76
pubmed: 28215228
Mol Med. 2015 Mar 13;20:649-57
pubmed: 25333921
J Occup Med Toxicol. 2006 Jun 06;1:10
pubmed: 16756675
Part Fibre Toxicol. 2006 Sep 08;3:13
pubmed: 16961926
Toxicol Sci. 2019 Jun 1;169(2):579-592
pubmed: 30859215
Rev Environ Health. 2021 Sep 16;:
pubmed: 34529912
Science. 2016 Aug 19;353(6301):777-83
pubmed: 27540165
Neurosci Lett. 2014 Nov 7;583:159-64
pubmed: 25263790
PLoS One. 2009 Dec 16;4(12):e8157
pubmed: 20016779
Biomed J. 2018 Jun;41(3):141-162
pubmed: 30080655
Glia. 2001 Nov;36(2):180-90
pubmed: 11596126
Toxicology. 2018 Nov 1;409:119-128
pubmed: 30053496
Environ Health Perspect. 2003 Jun;111(8):1065-73
pubmed: 12826478
Cell Tissue Res. 2021 Apr;384(1):129-148
pubmed: 33409657
J Biol Chem. 2013 Jul 26;288(30):21955-71
pubmed: 23754278
Free Radic Biol Med. 2010 Dec 1;49(11):1674-84
pubmed: 20828611
Cell Tissue Res. 2017 Mar;367(3):627-642
pubmed: 28168324

Auteurs

Nyzil Massey (N)

Biomedical Sciences, Iowa State University, Ames, IA, United States.

Denusha Shrestha (D)

Biomedical Sciences, Iowa State University, Ames, IA, United States.

Sanjana Mahadev Bhat (SM)

Biomedical Sciences, Iowa State University, Ames, IA, United States.

Piyush Padhi (P)

Biomedical Sciences, Iowa State University, Ames, IA, United States.

Chong Wang (C)

Veterinary Diagnostic and Production Animal Medicine (VDPAM), Iowa State University, Ames, IA, United States.
Statistics, Iowa State University, Ames, IA, United States.

Locke A Karriker (LA)

Veterinary Diagnostic and Production Animal Medicine (VDPAM), Iowa State University, Ames, IA, United States.

Jodi D Smith (JD)

Veterinary Pathology, Iowa State University, Ames, IA, United States.

Anumantha G Kanthasamy (AG)

Biomedical Sciences, Iowa State University, Ames, IA, United States.

Chandrashekhar Charavaryamath (C)

Biomedical Sciences, Iowa State University, Ames, IA, United States.

Classifications MeSH