Evaluation and Application of Ultra-Low-Resolution Pressure Reactivity Index in Moderate or Severe Traumatic Brain Injury.
Journal
Journal of neurosurgical anesthesiology
ISSN: 1537-1921
Titre abrégé: J Neurosurg Anesthesiol
Pays: United States
ID NLM: 8910749
Informations de publication
Date de publication:
01 Jul 2023
01 Jul 2023
Historique:
received:
13
10
2021
accepted:
24
03
2022
medline:
14
6
2023
pubmed:
3
5
2022
entrez:
2
5
2022
Statut:
ppublish
Résumé
The pressure reactivity index (PRx) has emerged as a surrogate method for the continuous bedside estimation of cerebral autoregulation and a predictor of unfavorable outcome after traumatic brain injury (TBI). However, calculation of PRx require continuous high-resolution monitoring currently limited to specialized intensive care units. The aim of this study was to evaluate a new index, the ultra-low-frequency PRx (UL-PRx) sampled at ∼0.0033 Hz at ∼5 minutes periods, and to investigate its association with outcome. Demographic data, admission Glasgow coma scale, in-hospital mortality and Glasgow outcome scale extended at 12 months were extracted from electronic records. The filtering and preparation of time series of intracranial pressure (ICP), mean arterial pressure and cerebral perfusion pressure (CPP), and calculation of the indices (UL-PRx, Δ-optimal CPP), were performed in MATLAB using an in-house algorithm. A total of 164 TBI patients were included in the study; in-hospital and 12-month mortality was 29.3% and 38.4%, respectively, and 64% of patients had poor neurological outcome at 12 months. On univariate analysis, ICP, CPP, UL-PRx, and ΔCPPopt were associated with 12-month mortality. After adjusting for age, Glasgow coma scale, ICP and CPP, mean UL-PRx and UL-PRx thresholds of 0 and +0.25 remained associated with 12-month mortality. Similar findings were obtained for in-hospital mortality. For mean UL-PRx, the area under the receiver operating characteristic curves for in-hospital and 12-month mortality were 0.78 (95% confidence interval [CI]: 0.69-0.87; P <0.001) and 0.70 (95% CI: 0.61-0.79; P <0.001), respectively, and 0.65 (95% CI: 0.57-0.74; P =0.001) for 12-month neurological outcome. Our findings indicate that ultra-low-frequency sampling might provide sufficient resolution to derive information about the state of cerebrovascular autoregulation and prediction of 12-month outcome in TBI patients.
Sections du résumé
BACKGROUND
BACKGROUND
The pressure reactivity index (PRx) has emerged as a surrogate method for the continuous bedside estimation of cerebral autoregulation and a predictor of unfavorable outcome after traumatic brain injury (TBI). However, calculation of PRx require continuous high-resolution monitoring currently limited to specialized intensive care units. The aim of this study was to evaluate a new index, the ultra-low-frequency PRx (UL-PRx) sampled at ∼0.0033 Hz at ∼5 minutes periods, and to investigate its association with outcome.
METHODS
METHODS
Demographic data, admission Glasgow coma scale, in-hospital mortality and Glasgow outcome scale extended at 12 months were extracted from electronic records. The filtering and preparation of time series of intracranial pressure (ICP), mean arterial pressure and cerebral perfusion pressure (CPP), and calculation of the indices (UL-PRx, Δ-optimal CPP), were performed in MATLAB using an in-house algorithm.
RESULTS
RESULTS
A total of 164 TBI patients were included in the study; in-hospital and 12-month mortality was 29.3% and 38.4%, respectively, and 64% of patients had poor neurological outcome at 12 months. On univariate analysis, ICP, CPP, UL-PRx, and ΔCPPopt were associated with 12-month mortality. After adjusting for age, Glasgow coma scale, ICP and CPP, mean UL-PRx and UL-PRx thresholds of 0 and +0.25 remained associated with 12-month mortality. Similar findings were obtained for in-hospital mortality. For mean UL-PRx, the area under the receiver operating characteristic curves for in-hospital and 12-month mortality were 0.78 (95% confidence interval [CI]: 0.69-0.87; P <0.001) and 0.70 (95% CI: 0.61-0.79; P <0.001), respectively, and 0.65 (95% CI: 0.57-0.74; P =0.001) for 12-month neurological outcome.
CONCLUSIONS
CONCLUSIONS
Our findings indicate that ultra-low-frequency sampling might provide sufficient resolution to derive information about the state of cerebrovascular autoregulation and prediction of 12-month outcome in TBI patients.
Identifiants
pubmed: 35499152
doi: 10.1097/ANA.0000000000000847
pii: 00008506-202307000-00010
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
313-321Informations de copyright
Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.
Déclaration de conflit d'intérêts
The authors have no conflicts of interest to declare.
Références
Lassen NA. Cerebral blood flow and oxygen consumption in man. Physiol Rev. 1959;39:183–238. doi:10.1152/physrev.1959.39.2.183
doi: 10.1152/physrev.1959.39.2.183
Armstead WM. Cerebral blood flow autoregulation and dysautoregulation. Anesthesiol Clin. 2016;34:465–477. doi:10.1016/j.anclin.2016.04.002
doi: 10.1016/j.anclin.2016.04.002
Rosner MJ, Rosner SD, Johnson AH. Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg. 1995;83:949–962. doi:10.3171/jns.1995.83.6.0949
doi: 10.3171/jns.1995.83.6.0949
Lang EW, Chesnut RM. A bedside method for investigating the integrity and critical thresholds of cerebral pressure autoregulation in severe traumatic brain injury patients. Br J Neurosurg. 2000;14:117–126. doi:10.1080/02688690050004534
doi: 10.1080/02688690050004534
Czosnyka M, Smielewski P, Kirkpatrick P, et al. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41:11–17; discussion 17–19. doi:10.1097/00006123-199707000-00005
doi: 10.1097/00006123-199707000-00005
Steiner LA, Czosnyka M, Piechnik SK, et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30:733–738. doi:10.1097/00003246-200204000-00002
doi: 10.1097/00003246-200204000-00002
Depreitere B, Güiza F, Van den Berghe G, et al. Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data. J Neurosurg. 2014;120:1451–1457. doi:10.3171/2014.3.JNS131500
doi: 10.3171/2014.3.JNS131500
Sorrentino E, Diedler J, Kasprowicz M, et al. Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care. 2012;16:258–266. doi:10.1007/s12028-011-9630-8
doi: 10.1007/s12028-011-9630-8
Aries MJH, Czosnyka M, Budohoski KP, et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40:2456–2463. doi:10.1097/CCM.0b013e3182514eb6
doi: 10.1097/CCM.0b013e3182514eb6
Needham E, McFadyen C, Newcombe V, et al. Cerebral perfusion pressure targets individualized to pressure-reactivity index in moderate to severe traumatic brain injury: a systematic review. J Neurotrauma. 2017;34:963–970. doi:10.1089/neu.2016.4450
doi: 10.1089/neu.2016.4450
Tas J, Beqiri E, van Kaam RC, et al. Targeting Autoregulation-Guided Cerebral Perfusion Pressure after Traumatic Brain Injury (COGiTATE): a feasibility randomized controlled clinical trial. J Neurotrauma. 2021;38:2790–2800. doi:10.1089/neu.2021.0197
doi: 10.1089/neu.2021.0197
De Georgia MA, Kaffashi F, Jacono FJ, et al. Information technology in critical care: review of monitoring and data acquisition systems for patient care and research. Sci World J. 2015;2015:727694. doi:10.1155/2015/727694
doi: 10.1155/2015/727694
Santos E, Diedler J, Sykora M, et al. Low-frequency sampling for PRx calculation does not reduce prognostication and produces similar CPPopt in intracerebral haemorrhage patients. Acta Neurochir (Wien). 2011;153:2189–2195. doi:10.1007/s00701-011-1148-5
doi: 10.1007/s00701-011-1148-5
Sánchez-Porras R, Santos E, Czosnyka M, et al. “Long” pressure reactivity index (L-PRx) as a measure of autoregulation correlates with outcome in traumatic brain injury patients. Acta Neurochir (Wien). 2012;154:1575–1581. doi:10.1007/s00701-012-1423-0
doi: 10.1007/s00701-012-1423-0
Riemann L, Beqiri E, Smielewski P, et al. Low-resolution pressure reactivity index and its derived optimal cerebral perfusion pressure in adult traumatic brain injury: a CENTER-TBI study. Crit Care. 2020;24:266. doi:10.1186/s13054-020-02974-8
doi: 10.1186/s13054-020-02974-8
Lachat C, Hawwash D, Ocké MC, et al. Strengthening the Reporting of Observational Studies in Epidemiology-Nutritional Epidemiology (STROBE-nut): an extension of the STROBE statement. PLoS Med. 2016;13:e1002036. doi:10.1371/journal.pmed.1002036
doi: 10.1371/journal.pmed.1002036
LeGrand SA, Hindman BJ, Dexter F, et al. Reliability of a telephone-based Glasgow Outcome Scale assessment using a structured interview in a heterogenous population of patients and examiners. J Neurotrauma. 2007;24:1437–1446. doi:10.1089/neu.2007.0293
doi: 10.1089/neu.2007.0293
Gritti P, Zangari R, Carobbio A, et al. Acute and subacute outcome predictors in moderate and severe traumatic brain injury: a retrospective monocentric study. World Neurosurg. 2019;128:e531–e540. doi:10.1016/j.wneu.2019.04.190
doi: 10.1016/j.wneu.2019.04.190
Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons. Guidelines for the management of severe traumatic brain injury. J Neurotrauma. 2007;24(suppl 1):S1–106. doi:10.1089/neu.2007.9999
doi: 10.1089/neu.2007.9999
Badjatia N, Carney N, Crocco TJ, et al. Guidelines for prehospital management of traumatic brain injury 2nd ed. Prehospital Emerg Care Off J Natl Assoc EMS Physicians Natl Assoc State EMS Dir. 2008;12(suppl 1):S1–S52. doi:10.1080/10903120701732052
doi: 10.1080/10903120701732052
Carney N, Totten AM, O’Reilly C, et al. Guidelines for the Management of Severe Traumatic Brain Injury, 4th ed. Neurosurgery. 2017;80:6–15. doi:10.1227/NEU.0000000000001432
doi: 10.1227/NEU.0000000000001432
Kim N, Krasner A, Kosinski C, et al. Trending autoregulatory indices during treatment for traumatic brain injury. J Clin Monit Comput. 2016;30:821–831. doi:10.1007/s10877-015-9779-3
doi: 10.1007/s10877-015-9779-3
Beqiri E, Smielewski P, Robba C, et al. Feasibility of individualised severe traumatic brain injury management using an automated assessment of optimal cerebral perfusion pressure: the COGiTATE phase II study protocol. BMJ Open. 2019;9:e030727. doi:10.1136/bmjopen-2019-030727
doi: 10.1136/bmjopen-2019-030727
Hasen M, Gomez A, Froese L, et al. Alternative continuous intracranial pressure-derived cerebrovascular reactivity metrics in traumatic brain injury: a scoping overview. Acta Neurochir (Wien). 2020;162:1647–1662. doi:10.1007/s00701-020-04378-7
doi: 10.1007/s00701-020-04378-7
Zeiler FA, Ercole A, Beqiri E, et al. Association between cerebrovascular reactivity monitoring and mortality is preserved when adjusting for baseline admission characteristics in adult traumatic brain injury: A CENTER-TBI Study. J Neurotrauma. 2020;37:1233–1241. doi:10.1089/neu.2019.6808
doi: 10.1089/neu.2019.6808
Lang EW, Kasprowicz M, Smielewski P, et al. Short pressure reactivity index versus long pressure reactivity index in the management of traumatic brain injury. J Neurosurg. 2015;122:588–594. doi:10.3171/2014.10.JNS14602
doi: 10.3171/2014.10.JNS14602
Güiza F, Depreitere B, Piper I, et al. Visualizing the pressure and time burden of intracranial hypertension in adult and paediatric traumatic brain injury. Intensive Care Med. 2015;41:1067–1076. doi:10.1007/s00134-015-3806-1
doi: 10.1007/s00134-015-3806-1
Schramm P, Klein KU, Pape M, et al. Serial measurement of static and dynamic cerebrovascular autoregulation after brain injury. J Neurosurg Anesthesiol. 2011;23:41–44. doi:10.1097/ANA.0b013e3181f35854
doi: 10.1097/ANA.0b013e3181f35854
Panerai RB. Assessment of cerebral pressure autoregulation in humans--a review of measurement methods. Physiol Meas. 1998;19:305–338. doi:10.1088/0967-3334/19/3/001
doi: 10.1088/0967-3334/19/3/001
Fraser CD, Brady KM, Rhee CJ, et al. The frequency response of cerebral autoregulation. J Appl Physiol Bethesda Md 1985. 2013;115:52–56. doi:10.1152/japplphysiol.00068.2013
doi: 10.1152/japplphysiol.00068.2013
Tan CO, Taylor JA. Integrative physiological and computational approaches to understand autonomic control of cerebral autoregulation. Exp Physiol. 2014;99:3–15. doi:10.1113/expphysiol.2013.072355
doi: 10.1113/expphysiol.2013.072355
Zhang R, Zuckerman JH, Giller CA, et al. Transfer function analysis of dynamic cerebral autoregulation in humans. Am J Physiol. 1998;274(pt 2):H233–H241. doi:10.1152/ajpheart.1998.274.1.h233
doi: 10.1152/ajpheart.1998.274.1.h233
Hamner JW, Cohen MA, Mukai S, et al. Spectral indices of human cerebral blood flow control: responses to augmented blood pressure oscillations. J Physiol. 2004;559(pt 3):965–973. doi:10.1113/jphysiol.2004.066969
doi: 10.1113/jphysiol.2004.066969
de Jong DLK, Tarumi T, Liu J, et al. Lack of linear correlation between dynamic and steady-state cerebral autoregulation. J Physiol. 2017;595:5623–5636. doi:10.1113/JP274304
doi: 10.1113/JP274304
Ruesch A, Acharya D, Schmitt S, et al. Comparison of static and dynamic cerebral autoregulation under anesthesia influence in a controlled animal model. PloS One. 2021;16:e0245291. doi:10.1371/journal.pone.0245291
doi: 10.1371/journal.pone.0245291
Hawryluk GWJ, Aguilera S, Buki A, et al. A management algorithm for patients with intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). Intensive Care Med. 2019;45:1783–1794. doi:10.1007/s00134-019-05805-9
doi: 10.1007/s00134-019-05805-9
Howells T, Elf K, Jones PA, et al. Pressure reactivity as a guide in the treatment of cerebral perfusion pressure in patients with brain trauma. J Neurosurg. 2005;102:311–317. doi:10.3171/jns.2005.102.2.0311
doi: 10.3171/jns.2005.102.2.0311
Riemann L, Beqiri E, Younsi A, et al. Predictive and discriminative power of pressure reactivity indices in traumatic brain injury. Neurosurgery. 2020;87:655–663. doi:10.1093/neuros/nyaa039
doi: 10.1093/neuros/nyaa039