Purslane (Portulaca oleracea L.) as a novel green-bioreactor for expression of human serum albumin (HSA) gene.
5′UTR
Agrobacterium
Biopharmaceuticals
Bioreactor
Transformed plant
Journal
Transgenic research
ISSN: 1573-9368
Titre abrégé: Transgenic Res
Pays: Netherlands
ID NLM: 9209120
Informations de publication
Date de publication:
06 2022
06 2022
Historique:
received:
01
05
2021
accepted:
04
01
2022
pubmed:
3
5
2022
medline:
31
5
2022
entrez:
2
5
2022
Statut:
ppublish
Résumé
Transgenic plants showed high potential to become a valuable and safe source of bio-compounds that can be used as therapeutics without any require for pooled human blood products. Human serum albumin (HSA) is one of the best-selling pharmaceuticals in the world because it is utilized for treating several acute illnesses, including hypovolemia, burns, and hemorrhage. This work was aimed to investigate the production of recombinant HSA (rHSA) protein in a plant-based expression platform. For this, we used in-planta and tissue culture-based Agrobacterium-mediated transformation (TCBAT) procedures to insert HSA gene into purslane (Portulaca oleracea L.) genome. The purslane seeds and leaves were infected with A. tumefaciens strain LBA4404 containing the HSA gene on pBI121 plasmid, and then regenerated into transgenic plant on MS medium. The qRT-PCR, southern hybridization, western blotting, and ELISA analysis were accomplished to corroborate the insertion and expression of HSA gene in transgenic plantlets. The molecular asses indicated that HSA gene was successfully transferred and expressed in purslane plants using in-planta and TCBAT methods. The first attempt to express rHSA in purslane resulted in a low-level accumulation of the protein in the transgenic plant shoots. Therefore, we used a synthetic 5'UTR (synJ) to enhance HSA transcript stability and translation efficiency. The results suggested that the synJ caused pronounced enhancement of rHSA expression rate. The highest amount of rHSA protein was recorded in transgenic purslane generated by TCBAT method (33.92 ± 4.31 µg/g FW).
Identifiants
pubmed: 35499672
doi: 10.1007/s11248-022-00296-9
pii: 10.1007/s11248-022-00296-9
doi:
Substances chimiques
Serum Albumin, Human
ZIF514RVZR
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
369-380Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F (2012) Role of transgenic plants in agriculture and biopharming. Biotechnol Adv 30(3):524–540
pubmed: 21959304
doi: 10.1016/j.biotechadv.2011.09.006
Alam MA, Juraimi AS, Rafii MY, Hamid AA, Uddin MK, Alam MZ, Latif MA (2014) Genetic improvement of Purslane (Portulaca oleracea L.) and its future prospects. Mol Biol Rep 41(11):7395–7411
pubmed: 25085039
doi: 10.1007/s11033-014-3628-1
Amal TC, Karthika P, Dhandapani G, Selvakumar S, Vasanth K (2020) A simple and efficient Agrobacterium-mediated in planta transformation protocol for horse gram (Macrotyloma uniflorum Lam. Verdc.). J Genet Eng Biotechnol 18:1–9
doi: 10.1186/s43141-020-00023-z
Barbosa S, Taboada P, Mosquera V (2014) Fibrillation and polymorphism of human serum albumin. In: Bio-nanoimaging (pp 345–362). Academic Press
Biłas R, Szafran K, Hnatuszko-Konka K, Kononowicz AK (2016) Cis-regulatory elements used to control gene expression in plants. Plant Cell Tiss Org 2:269–287
doi: 10.1007/s11240-016-1057-7
Boehm R (2007) Bioproduction of therapeutic proteins in the 21st century and the role of plants and plant cells as production platforms. Ann NY Acad Sci 1102(1):121–134
pubmed: 17470916
doi: 10.1196/annals.1408.009
Cervera M, Pina JA, Juárez J, Navarro L, Pena L (2000) A broad exploration of a transgenic population of citrus: stability of gene expression and phenotype. Theor Appl Genet 100(5):670–677
doi: 10.1007/s001220051338
Chen Z, He Y, Shi B, Yang D (2013) Human serum albumin from recombinant DNA technology: challenges and strategies. Biochim Biophys Acta Gen Subj 1830(12):5515–5525
doi: 10.1016/j.bbagen.2013.04.037
de Oliveira MLP, Febres VJ, Costa MGC, Moore GA, Otoni WC (2009) High-efficiency Agrobacterium-mediated transformation of citrus via sonication and vacuum infiltration. Plant Cell Rep 28(3):387–395
pubmed: 19048258
doi: 10.1007/s00299-008-0646-2
Egelkrout E, Rajan V, Howard JA (2012) Overproduction of recombinant proteins in plants. Plant Sci 184:83–101
pubmed: 22284713
doi: 10.1016/j.plantsci.2011.12.005
Fahad S, Khan FA, Pandupuspitasari NS, Ahmed MM, Liao YC, Waheed MT, Sameeullah M, Hussain S, Saud S, Hassan S, Jan A (2015) Recent developments in therapeutic protein expression technologies in plants. Biotechnol Lett 37(2):265–279
pubmed: 25326175
doi: 10.1007/s10529-014-1699-7
Fanali G, Di Masi A, Trezza V, Marino M, Fasano M, Ascenzi P (2012) Human serum albumin: from bench to bedside. Mol Aspects Med 33(3):209–290
pubmed: 22230555
doi: 10.1016/j.mam.2011.12.002
Farran I, Sánchez-Serrano JJ, Medina JF, Prieto J, Mingo-Castel AM (2002) Targeted expression of human serum albumin to potato tubers. Transgenic Res 11:337–346
pubmed: 12212837
doi: 10.1023/A:1016356510770
Farran I, Río-Manterola F, Íñiguez M, Gárate S, Prieto J, Mingo-Castel AM (2008) High-density seedling expression system for the production of bioactive human cardiotrophin-1, a potential therapeutic cytokine, in transgenic tobacco chloroplasts. Plant Biotechnol J 6:516–527
pubmed: 18384506
doi: 10.1111/j.1467-7652.2008.00334.x
Fernández-San Millán A, Mingo-Castel A, Miller M, Daniell H (2003) A chloroplast transgenic approach to hyper-express and purify Human Serum Albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol J 1(2):71–79
pubmed: 17147744
doi: 10.1046/j.1467-7652.2003.00008.x
Habibi P, Prado GS, Pelegrini PB, Hefferon KL, Soccol CR, Grossi-de-Sa MF (2017) Optimization of inside and outside factors to improve recombinant protein yield in plant. Plant Cell Tiss Org Cult 130(3):449–467
doi: 10.1007/s11240-017-1240-5
He Y, Ning T, Xie T, Qiu Q, Zhang L, Sun Y, Jiang D, Fu K, Yin F, Zhang W, Shen L (2011) Large-scale production of functional human serum albumin from transgenic rice seeds. Proc Natl Acad Sci USA 108(47):19078–19083
pubmed: 22042856
pmcid: 3223471
doi: 10.1073/pnas.1109736108
Hefferon K (2013) Plant-derived pharmaceuticals for the developing world. Biotechnol J 8(10):1193–1202
pubmed: 23857915
Hoshida H, Kondo M, Kobayashi T, Yarimizu T, Akada R (2017) 5-UTR introns enhance protein expression in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 101(1):241–251
pubmed: 27734122
doi: 10.1007/s00253-016-7891-z
Huang LF, Liu YK, Lu CA, Hsieh SL, Yu SM (2005) Production of human serum albumin by sugar starvation induced promoter and rice cell culture. Transgenic Res 14(5):569–581
pubmed: 16245148
doi: 10.1007/s11248-004-6481-5
Ishizaki T, Kumashiro T (2011) Investigations of copy number of transgene, fertility and expression level of an introduced GUS gene in transgenic NERICA produced by Agrobacterium-mediated methods. In Vitro Cell Dev Biol Plant 47(3):339–347
doi: 10.1007/s11627-011-9341-z
Jan SA, Shinwari ZK, Shah SH, Shahzad A, Zia MA, Ahmad N (2016) In-planta transformation: recent advances. Rom Biotechnol Lett 21(1):11085–11091
Kalbande BB, Patil AS (2016) Plant tissue culture independent Agrobacterium tumefaciens mediated In-planta transformation strategy for upland cotton (Gossypium hirsutum). J Genet Eng Biotechnol 14(1):9–18
pubmed: 30647592
pmcid: 6299899
doi: 10.1016/j.jgeb.2016.05.003
Kanoria S, Burma PK (2012) A 28 nt long synthetic 5′ UTR (synJ) as an enhancer of transgene expression in dicotyledonous plants. BMC Biotechnol 12(1):85–98
pubmed: 23140609
pmcid: 3536603
doi: 10.1186/1472-6750-12-85
Karg SR, Kallio PT (2009) The production of biopharmaceuticals in plant systems. Biotechnol Adv 27(6):879–894
pubmed: 19647060
doi: 10.1016/j.biotechadv.2009.07.002
Kesik-Brodacka M (2018) Progress in biopharmaceutical development. Biotechnol Appl Biochem 65(3):306–322
pubmed: 28972297
doi: 10.1002/bab.1617
Kinch MS (2015) An overview of FDA-approved biologics medicines. Drug Discov Today 20(4):393–398
pubmed: 25220442
doi: 10.1016/j.drudis.2014.09.003
Kobayashi K (2006) Summary of recombinant human serum albumin development. Biologicals 34(1):55–59
pubmed: 16464610
doi: 10.1016/j.biologicals.2005.08.021
Li J, Todd TC, Trick HN (2010) Rapid in planta evaluation of root expressed transgenes in chimeric soybean plants. Plant Cell Rep 29(2):113–123
pubmed: 20012965
doi: 10.1007/s00299-009-0803-2
Luo Y, Wang Y, Liu J, Lan H, Shao M, Yu Y, Quan F, Zhang Y (2015) Production of transgenic cattle highly expressing human serum albumin in milk by phiC31 integrase-mediated gene delivery. Transgenic Res 24(5):875–883
pubmed: 26198751
doi: 10.1007/s11248-015-9898-0
Miki B (2002) Transgene expression and control. In Vitro Cell Dev Biol Plant 38(2):139–145
doi: 10.1079/IVP2001276
Mizukami A, Caron AL, Picanço-Castro V, Swiech K (2018) Platforms for recombinant therapeutic glycoprotein production. In: Picanço-Castro V, Swiech K (eds) Recombinant glycoprotein production. Humana Press, New York, NY, pp 1–14
Nguyen MT, Heo Y, Do BH, Baek S, Kim CJ, Jang YJ, Lee W, Choe H (2020) Bacterial overexpression and purification of soluble recombinant human serum albumin using maltose-binding protein and protein disulphide isomerase. Protein Express Purif 167:105530–105564
doi: 10.1016/j.pep.2019.105530
Ogawa S, Tomita M, Shimizu K, Yoshizato K (2007) Generation of a transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon: production of recombinant human serum albumin. J Biotechnol 128(3):531–544
pubmed: 17166611
doi: 10.1016/j.jbiotec.2006.10.019
Pang J, Zhou J, Yang D (2020) Knock-in at GluA1 locus improves recombinant human serum albumin expression in rice grain. J Biotechnol 321:87–95
pubmed: 32619642
doi: 10.1016/j.jbiotec.2020.06.018
Park KY, Wi SJ (2016) Potential of plants to produce recombinant protein products. J Plant Biol 59(6):559–568
pubmed: 32288513
pmcid: 7101786
doi: 10.1007/s12374-016-0482-9
Qian Q, You Z, Ye L, Che J, Wang Y, Wang S, Zhong B (2018) High-efficiency production of human serum albumin in the posterior silk glands of transgenic silkworms, Bombyx mori L. PLoS ONE 13:1–11
Reynolds T, de Zafra C, Kim A, Gelzleichter TR (2013) Overview of biopharmaceuticals and comparison with small-molecule drug development. In: Nonclinical development of novel biologics biosimilars vaccines and specialty biologics (pp 3–33). Academic Press
Samadder P, Sivamani E, Lu J, Li X, Qu R (2008) Transcriptional and post-transcriptional enhancement of gene expression by the 5′ UTR intron of rice rubi3 gene in transgenic rice cells. Mol Genet Genom 279(4):429–439
doi: 10.1007/s00438-008-0323-8
Sambrook HC (1989) Molecular cloning a laboratory manual. Cloud Spring Harbor, NY
Sedaghati B, Haddad R, Bandehpour M (2019) Efficient plant regeneration and Agrobacterium-mediated transformation via somatic embryogenesis in purslane (Portulaca oleracea L.): an important medicinal plant. Plant Cell Tiss Org Cult 136(2):231–245
doi: 10.1007/s11240-018-1509-3
Sedaghati B, Haddad R, Bandehpour M (2020) Transient expression of human serum albumin (HSA) in tobacco leaves. Mol Biol Rep 47(9):7169–7177
pubmed: 32642917
doi: 10.1007/s11033-020-05640-y
Sedaghati B, Haddad R, Bandehpour M (2021) Development of an efficient in-planta Agrobacterium-mediated transformation method for Iranian purslane (Portulaca oleracea L.) using sonication and vacuum infiltration. Acta Physiol Plant 43(2):1–9
doi: 10.1007/s11738-020-03185-y
Sethuraman N, Stadheim TA (2006) Challenges in therapeutic glycoprotein production. Curr Opin Biotechnol 17(4):341–346
pubmed: 16828275
doi: 10.1016/j.copbio.2006.06.010
Sijmons PC, Dekker BM, Schrammeijer B, Verwoerd TC, Van Den Elzen PJ, Hoekema A (1990) Production of correctly processed human serum albumin in transgenic plants. Bio/technol 8(3):217–221
Streatfield SJ (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5(1):2–15
pubmed: 17207252
doi: 10.1111/j.1467-7652.2006.00216.x
Subramanyam K, Subramanyam K, Sailaja KV, Srinivasulu M, Lakshmidevi K (2011) Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration. Plant Cell Rep 30(3):425–436
pubmed: 21212957
doi: 10.1007/s00299-010-0996-4
Swiech K, Picanço-Castro V, Covas DT (2012) Human cells: new platform for recombinant therapeutic protein production. Protein Expr Purif 84(1):147–153
pubmed: 22580292
doi: 10.1016/j.pep.2012.04.023
Teixeira MC, Coelho N, Olsson ME, Brodelius PE, Carvalho ISD, Brodelius M (2009) Molecular cloning and expression analysis of three omega-6 desaturase genes from purslane (Portulaca oleracea L.). Biotechnol Lett 31(7):1089–1101
pubmed: 19277477
doi: 10.1007/s10529-009-9956-x
Wu H, Awan FS, Vilarinho A, Zeng Q, Kannan B, Phipps T, McCuiston J, Wang W, Caffall K, Altpeter F (2015) Transgene integration complexity and expression stability following biolistic or Agrobacterium-mediated transformation of sugarcane. In Vitro Cell Dev Biol Plant 51(6):603–611
doi: 10.1007/s11627-015-9710-0
Xu J, Dolan MC, Medrano G, Cramer CL, Weathers PJ (2012) Green factory: plants as bioproduction platforms for recombinant proteins. Biotechnol Adv 30(5):1171–1184
pubmed: 21924345
doi: 10.1016/j.biotechadv.2011.08.020
Xu J, Towler M, Weathers PJ (2018) Platforms for plant-based protein production. Bioproc Plant in Vitro Syst 2018:509–548
doi: 10.1007/978-3-319-54600-1_14
Yaghoubian Y, Siadat SA, Telavat MM, Pirdashti H (2016) Quantify the response of purslane plant growth, photosynthesis pigments and photosystem II photochemistry to cadmium concentration gradients in the soil. Russ J Plant Physiol 63(1):77–84
doi: 10.1134/S1021443716010180
Zhang YHP, Sun J, Ma Y (2017) Biomanufacturing: history and perspective. J Ind Microbiol Biotechnol 44(4–5):773–784
pubmed: 27837351
doi: 10.1007/s10295-016-1863-2
Zhu J (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 30(5):1158–1170
pubmed: 21968146
doi: 10.1016/j.biotechadv.2011.08.022