Electric control of valley polarization in monolayer WSe


Journal

Nature nanotechnology
ISSN: 1748-3395
Titre abrégé: Nat Nanotechnol
Pays: England
ID NLM: 101283273

Informations de publication

Date de publication:
Jul 2022
Historique:
received: 28 10 2021
accepted: 07 03 2022
pubmed: 3 5 2022
medline: 3 5 2022
entrez: 2 5 2022
Statut: ppublish

Résumé

Electrical manipulation of the valley degree of freedom in transition metal dichalcogenides is central to developing valleytronics. Towards this end, ferromagnetic contacts, such as Ga(Mn)As and permalloy, have been exploited to inject spin-polarized carriers into transition metal dichalcogenides to realize valley-dependent polarization. However, these materials require either a high external magnetic field or complicated epitaxial growth steps, limiting their practical applications. Here we report van der Waals heterostructures based on a monolayer WSe

Identifiants

pubmed: 35501377
doi: 10.1038/s41565-022-01115-2
pii: 10.1038/s41565-022-01115-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

721-728

Subventions

Organisme : Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
ID : 109-2112-M-007-032-MY3
Organisme : Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
ID : 109-2112-M-007-034-MY3
Organisme : Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
ID : 107-2112-M-007-002-MY3
Organisme : National Tsing Hua University (NTHU)
ID : 110QI039E1

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Xu, X. D., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).
doi: 10.1038/nphys2942
Xiao, D., Liu, G. B., Feng, W. X., Xu, X. D. & Yao, W. Coupled spin and valley physics in monolayers of MoS
doi: 10.1103/PhysRevLett.108.196802
Mak, K. F., Xiao, D. & Shan, J. Light–valley interactions in 2D semiconductors. Nat. Photon. 12, 451–460 (2018).
doi: 10.1038/s41566-018-0204-6
Zeng, H. L., Dai, J. F., Yao, W., Xiao, D. & Cui, X. D. Valley polarization in MoS
doi: 10.1038/nnano.2012.95
Mak, K. F., He, K. L., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS
doi: 10.1038/nnano.2012.96
Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012).
doi: 10.1038/ncomms1882
Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS
doi: 10.1126/science.1250140
Onga, M., Zhang, Y. J., Ideue, T. & Iwasa, Y. Exciton Hall effect in monolayer MoS
doi: 10.1038/nmat4996
Ye, Y. et al. Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. Nat. Nanotechnol. 11, 598–602 (2016).
doi: 10.1038/nnano.2016.49
Sanchez, O. L., Ovchinnikov, D., Misra, S., Allain, A. & Kis, A. Valley polarization by spin injection in a light-emitting van der Waals heterojunction. Nano Lett. 16, 5792–5797 (2016).
doi: 10.1021/acs.nanolett.6b02527
Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).
doi: 10.1126/science.aav4450
Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).
doi: 10.1038/s41565-019-0438-6
Burch, K. S., Mandrus, D. & Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).
doi: 10.1038/s41586-018-0631-z
Fei, Z. Y. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe
doi: 10.1038/s41563-018-0149-7
Tan, C. et al. Hard magnetic properties in nanoflake van der Waals Fe
doi: 10.1038/s41467-018-04018-w
Deng, Y. J. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe
doi: 10.1038/s41586-018-0626-9
Wang, Z. et al. Tunneling spin valves based on Fe
doi: 10.1021/acs.nanolett.8b01278
Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).
doi: 10.1038/natrevmats.2016.55
Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).
doi: 10.1038/nmat4205
Liu, C. H. et al. Nanocavity integrated van der Waals heterostructure light-emitting tunneling diode. Nano Lett. 17, 200–205 (2017).
doi: 10.1021/acs.nanolett.6b03801
Withers, F. et al. WSe
doi: 10.1021/acs.nanolett.5b03740
Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe
doi: 10.1038/nnano.2013.151
Huang, J. N., Hoang, T. B. & Mikkelsen, M. H. Probing the origin of excitonic states in monolayer WSe
doi: 10.1038/srep22414
Wang, G. et al. Valley dynamics probed through charged and neutral exciton emission in monolayer WSe
doi: 10.1103/PhysRevB.90.075413
Dey, P. et al. Gate-controlled spin–valley locking of resident carriers in WSe
doi: 10.1103/PhysRevLett.119.137401
Liu, C. H., Zheng, J. J., Chen, Y. Y., Fryett, T. & Majumdar, A. Van der Waals materials integrated nanophotonic devices. Opt. Mater. Express 9, 384–399 (2019).
doi: 10.1364/OME.9.000384
Brar, V. W., Sherrott, M. C. & Jariwala, D. Emerging photonic architectures in two-dimensional opto-electronics. Chem. Soc. Rev. 47, 6824–6844 (2018).
doi: 10.1039/C8CS00206A
May, A. F. et al. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe
doi: 10.1021/acsnano.8b09660
O’Hara, D. J. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 18, 3125–3131 (2018).
doi: 10.1021/acs.nanolett.8b00683
Liu, S. et al. Room-temperature valley polarization in atomically thin semiconductors via chalcogenide alloying. ACS Nano 14, 9873–9883 (2020).
doi: 10.1021/acsnano.0c02703
Huang, P. et al. Recent advances in two-dimensional ferromagnetism: materials synthesis, physical properties and device applications. Nanoscale 12, 2309–2327 (2020).
doi: 10.1039/C9NR08890C
Roemer, R., Liu, C. & Zou, K. Robust ferromagnetism in wafer-scale monolayer and multilayer Fe
doi: 10.1038/s41699-020-00167-z
Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).
doi: 10.1038/nature14417
Yu, G. L. et al. Interaction phenomena in graphene seen through quantum capacitance. Proc. Natl Acad. Sci. USA 110, 3282–3286 (2013).
doi: 10.1073/pnas.1300599110
McCreary, K. M., Currie, M., Hanbicki, A. T., Chuang, H. J. & Jonker, B. T. Understanding variations in circularly polarized photoluminescence in monolayer transition metal dichalcogenides. ACS Nano 11, 7988–7994 (2017).
doi: 10.1021/acsnano.7b02554
Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).
doi: 10.1038/natrevmats.2016.42
Katsuaki, S. Measurement of magneto-optical Kerr effect using piezo-birefringent modulator. Jpn J. Appl. Phys. 20, 2403 (1981).
doi: 10.1143/JJAP.20.2403
Wang, Z. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 13, 554–559 (2018).
doi: 10.1038/s41565-018-0186-z
Kresse, G. & Hafner, J. Ab-initio molecular-dynamics simulation of the liquid-metal amorphous–semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).
doi: 10.1103/PhysRevB.49.14251
Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
doi: 10.1103/PhysRevB.54.11169
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
doi: 10.1103/PhysRevB.50.17953
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
doi: 10.1103/PhysRevLett.77.3865

Auteurs

Jia-Xin Li (JX)

Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan.

Wei-Qing Li (WQ)

Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan.

Sheng-Hsiung Hung (SH)

Department of Physics, National Tsing Hua University, Hsinchu, Taiwan.

Po-Liang Chen (PL)

Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan.

Yueh-Chiang Yang (YC)

Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan.

Tian-Yun Chang (TY)

Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan.

Po-Wen Chiu (PW)

Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan.

Horng-Tay Jeng (HT)

Department of Physics, National Tsing Hua University, Hsinchu, Taiwan. jeng@phys.nthu.edu.tw.
Institute of Physics, Academia Sinica, Taipei, Taiwan. jeng@phys.nthu.edu.tw.
Physics Division, National Center for Theoretical Sciences, Hsinchu, Taiwan. jeng@phys.nthu.edu.tw.

Chang-Hua Liu (CH)

Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan. chliu@ee.nthu.edu.tw.
Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan. chliu@ee.nthu.edu.tw.

Classifications MeSH