ATRT-SHH comprises three molecular subgroups with characteristic clinical and histopathological features and prognostic significance.
ASCL1
Atypical teratoid/rhabdoid tumor
DNA methylation profiling
GFAP
Gene expression
Neuroradiology
OLIG2
Overall survival
Prognosis
Sonic hedgehog
Journal
Acta neuropathologica
ISSN: 1432-0533
Titre abrégé: Acta Neuropathol
Pays: Germany
ID NLM: 0412041
Informations de publication
Date de publication:
06 2022
06 2022
Historique:
received:
30
03
2022
accepted:
21
04
2022
revised:
21
04
2022
pubmed:
3
5
2022
medline:
18
5
2022
entrez:
2
5
2022
Statut:
ppublish
Résumé
Atypical teratoid/rhabdoid tumor (ATRT) is an aggressive central nervous system tumor characterized by loss of SMARCB1/INI1 protein expression and comprises three distinct molecular groups, ATRT-TYR, ATRT-MYC and ATRT-SHH. ATRT-SHH represents the largest molecular group and is heterogeneous with regard to age, tumor location and epigenetic profile. We, therefore, aimed to investigate if heterogeneity within ATRT-SHH might also have biological and clinical importance. Consensus clustering of DNA methylation profiles and confirmatory t-SNE analysis of 65 ATRT-SHH yielded three robust molecular subgroups, i.e., SHH-1A, SHH-1B and SHH-2. These subgroups differed by median age of onset (SHH-1A: 18 months, SHH-1B: 107 months, SHH-2: 13 months) and tumor location (SHH-1A: 88% supratentorial; SHH-1B: 85% supratentorial; SHH-2: 93% infratentorial, often extending to the pineal region). Subgroups showed comparable SMARCB1 mutational profiles, but pathogenic/likely pathogenic SMARCB1 germline variants were over-represented in SHH-2 (63%) as compared to SHH-1A (20%) and SHH-1B (0%). Protein expression of proneural marker ASCL1 (enriched in SHH-1B) and glial markers OLIG2 and GFAP (absent in SHH-2) as well as global mRNA expression patterns differed, but all subgroups were characterized by overexpression of SHH as well as Notch pathway members. In a Drosophila model, knockdown of Snr1 (the fly homologue of SMARCB1) in hedgehog activated cells not only altered hedgehog signaling, but also caused aberrant Notch signaling and formation of tumor-like structures. Finally, on survival analysis, molecular subgroup and age of onset (but not ASCL1 staining status) were independently associated with overall survival, older patients (> 3 years) harboring SHH-1B experiencing relatively favorable outcome. In conclusion, ATRT-SHH comprises three subgroups characterized by SHH and Notch pathway activation, but divergent molecular and clinical features. Our data suggest that molecular subgrouping of ATRT-SHH has prognostic relevance and might aid to stratify patients within future clinical trials.
Identifiants
pubmed: 35501487
doi: 10.1007/s00401-022-02424-5
pii: 10.1007/s00401-022-02424-5
pmc: PMC9107423
doi:
Substances chimiques
Hedgehog Proteins
0
SHH protein, human
0
SMARCB1 Protein
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
697-711Informations de copyright
© 2022. The Author(s).
Références
Brain Tumor Pathol. 2004;21(3):117-20
pubmed: 15696972
J Clin Oncol. 2020 Apr 10;38(11):1175-1185
pubmed: 32105509
Brain Pathol. 2021 Sep;31(5):e12967
pubmed: 33938067
Nature. 1996 Mar 7;380(6569):66-8
pubmed: 8598907
Acta Neuropathol. 2018 Aug;136(2):211-226
pubmed: 29909548
Cancer Cell. 2015 May 11;27(5):728-43
pubmed: 25965575
Nucleic Acids Res. 2021 Feb 22;49(3):e15
pubmed: 33275159
Mol Med Rep. 2015 Feb;11(2):843-50
pubmed: 25351872
Methods. 2014 Jun 15;68(1):199-206
pubmed: 24556557
Nat Rev Mol Cell Biol. 2005 Apr;6(4):306-17
pubmed: 15803137
Nat Neurosci. 2019 Jun;22(6):897-908
pubmed: 31086315
Dev Cell. 2009 Apr;16(4):576-87
pubmed: 19386266
Genes Chromosomes Cancer. 2013 Feb;52(2):185-90
pubmed: 23074045
Acta Neuropathol. 2018 Aug;136(2):181-210
pubmed: 29967940
Sci Rep. 2016 Feb 04;6:20270
pubmed: 26842779
Neuro Oncol. 2020 May 15;22(5):613-624
pubmed: 31889194
Nat Commun. 2014 Jun 03;5:4005
pubmed: 24892285
Lancet Oncol. 2015 May;16(5):569-82
pubmed: 25882982
Acta Neuropathol. 2013 Aug;126(2):291-301
pubmed: 23660940
Nat Med. 2010 Dec;16(12):1429-33
pubmed: 21076395
Development. 2010 Feb;137(3):519-29
pubmed: 20081196
BMC Dev Biol. 2013 Aug 12;13:31
pubmed: 23937294
Mol Clin Oncol. 2021 May;14(5):88
pubmed: 33767857
Genes Chromosomes Cancer. 2010 Feb;49(2):176-81
pubmed: 19902524
Nature. 2018 Mar 22;555(7697):469-474
pubmed: 29539639
Neuropathol Appl Neurobiol. 2020 Aug;46(5):478-492
pubmed: 32072658
J Neurosurg. 1996 Jul;85(1):56-65
pubmed: 8683283
J Cancer. 2018 Feb 11;9(5):778-783
pubmed: 29581755
Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):E4929-38
pubmed: 26283356
J Neurosci. 2005 Aug 10;25(32):7289-98
pubmed: 16093378
Curr Opin Neurobiol. 2017 Feb;42:93-101
pubmed: 28025176
Childs Nerv Syst. 2021 Apr;37(4):1067-1075
pubmed: 33236184
Neuro Oncol. 2021 Aug 2;23(8):1231-1251
pubmed: 34185076
Neuro Oncol. 2016 Jun;18(6):764-78
pubmed: 26755072
Development. 2008 Apr;135(7):1271-81
pubmed: 18287202
Pediatr Blood Cancer. 2013 Sep;60(9):1408-10
pubmed: 23512859
Dev Cell. 2010 May 18;18(5):862-76
pubmed: 20493818
Front Oncol. 2021 Feb 24;10:615976
pubmed: 33718116
J Neurosci Res. 2010 Jan;88(1):33-54
pubmed: 19610105
Cancer Cell. 2016 Mar 14;29(3):379-393
pubmed: 26923874
Science. 1991 Mar 8;251(4998):1239-43
pubmed: 1672471
Neuro Oncol. 2018 Nov 12;20(12):1672-1679
pubmed: 30010851
AJNR Am J Neuroradiol. 2014 Jul;35(7):1263-9
pubmed: 24831600
Cancer Cell. 2016 Dec 12;30(6):891-908
pubmed: 27960086
Neuro Oncol. 2020 Jul 7;22(7):1006-1017
pubmed: 31883020