The accumulation of Vγ4 T cells with aging is associated with an increased adaptive Vγ4 T cell response after foodborne Listeria monocytogenes infection of mice.

Foodborne infection Immunosenescence Listeria monocytogenes Mucosal immunity γδ T cells

Journal

Immunity & ageing : I & A
ISSN: 1742-4933
Titre abrégé: Immun Ageing
Pays: England
ID NLM: 101235427

Informations de publication

Date de publication:
03 May 2022
Historique:
received: 23 12 2021
accepted: 19 04 2022
entrez: 3 5 2022
pubmed: 4 5 2022
medline: 4 5 2022
Statut: epublish

Résumé

It is generally accepted that aging has detrimental effects on conventional T cell responses to systemic infections. However, most pathogens naturally invade the body through mucosal barriers. Although mucosal sites are highly enriched in unconventional immune sentinels like γδ T cells, little is currently known about the impact of aging on unconventional mucosal T cell responses. We previously established that foodborne infection with a mouse-adapted internalin A mutant Listeria monocytogenes (Lm) generates an adaptive intestinal memory CD44 Foodborne Lm infection of female Balb/c and C57BL/6 mice led to an increased adaptive CD44 Lm-elicited adaptive Vγ4 T cells appear resistant to immunosenescence and memory Vγ4 T cells could be utilized to provide protective immune functions during enteric infection of aged hosts. As such, oral immunization might offer an efficient therapeutic approach to generate unconventional memory T cells in the elderly.

Sections du résumé

BACKGROUND BACKGROUND
It is generally accepted that aging has detrimental effects on conventional T cell responses to systemic infections. However, most pathogens naturally invade the body through mucosal barriers. Although mucosal sites are highly enriched in unconventional immune sentinels like γδ T cells, little is currently known about the impact of aging on unconventional mucosal T cell responses. We previously established that foodborne infection with a mouse-adapted internalin A mutant Listeria monocytogenes (Lm) generates an adaptive intestinal memory CD44
RESULTS RESULTS
Foodborne Lm infection of female Balb/c and C57BL/6 mice led to an increased adaptive CD44
CONCLUSIONS CONCLUSIONS
Lm-elicited adaptive Vγ4 T cells appear resistant to immunosenescence and memory Vγ4 T cells could be utilized to provide protective immune functions during enteric infection of aged hosts. As such, oral immunization might offer an efficient therapeutic approach to generate unconventional memory T cells in the elderly.

Identifiants

pubmed: 35501808
doi: 10.1186/s12979-022-00275-y
pii: 10.1186/s12979-022-00275-y
pmc: PMC9063344
doi:

Types de publication

Journal Article

Langues

eng

Pagination

19

Subventions

Organisme : NIH HHS
ID : R21 AI076457
Pays : United States
Organisme : NIA NIH HHS
ID : R21 AG058981
Pays : United States
Organisme : NIH HHS
ID : T32 AI007539
Pays : United States
Organisme : NIH HHS
ID : K12 GM102771
Pays : United States
Organisme : G. Harold and Leila Y. Mathers Foundation
ID : MF-1901-00210

Informations de copyright

© 2022. The Author(s).

Références

Infect Immun. 1977 May;16(2):593-8
pubmed: 405325
Immunity. 2013 Jul 25;39(1):184-95
pubmed: 23890071
Immunity. 2014 May 15;40(5):747-57
pubmed: 24792910
Nat Immunol. 2007 Nov;8(11):1255-65
pubmed: 17893676
Aging Cell. 2020 Feb;19(2):e13099
pubmed: 31903715
Sci Rep. 2016 Aug 02;6:30842
pubmed: 27480406
J Clin Invest. 2018 Mar 1;128(3):1026-1042
pubmed: 29400698
Nat Immunol. 2018 Jan;19(1):10-19
pubmed: 29242543
Mech Ageing Dev. 1999 Sep 8;109(3):191-201
pubmed: 10576334
PLoS Pathog. 2012;8(11):e1003015
pubmed: 23166492
Eur J Immunol. 2011 Sep;41(9):2666-76
pubmed: 21660934
Semin Immunol. 2012 Jun;24(3):209-17
pubmed: 22551764
Trends Immunol. 2009 Jul;30(7):334-43
pubmed: 19540811
J Immunol. 2014 Apr 15;192(8):3697-708
pubmed: 24623128
Cell. 1986 Jun 6;45(5):733-42
pubmed: 3486721
Sci Rep. 2017 Jul 14;7(1):5509
pubmed: 28710491
J Exp Med. 2006 Apr 17;203(4):933-40
pubmed: 16549598
Mucosal Immunol. 2022 Jan;15(1):176-187
pubmed: 34462572
Nat Commun. 2017 Jan 09;7:13839
pubmed: 28067223
J Immunol. 2017 Jan 1;198(1):363-374
pubmed: 27864475
Science. 2012 Aug 31;337(6098):1115-9
pubmed: 22837383
Nat Immunol. 2018 May;19(5):464-474
pubmed: 29670241
Blood. 2008 Aug 15;112(4):1317-24
pubmed: 18539896
Pathogens. 2018 Jun 16;7(2):
pubmed: 29914156
Front Immunol. 2018 Nov 27;9:2636
pubmed: 30538697
N Engl J Med. 1997 Jan 9;336(2):100-5
pubmed: 8988887
J Immunol. 2008 Sep 1;181(5):3456-63
pubmed: 18714018
Proc Natl Acad Sci U S A. 2016 Jul 26;113(30):8502-7
pubmed: 27402748
Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17549-54
pubmed: 23047700
Foodborne Pathog Dis. 2015 Jun;12(6):492-9
pubmed: 26067228
Immunity. 2008 Dec 19;29(6):848-62
pubmed: 19100699
Front Immunol. 2020 Sep 11;11:575967
pubmed: 33042159
EBioMedicine. 2019 Jan;39:44-58
pubmed: 30528453
Mech Ageing Dev. 1998 May 1;102(1):67-80
pubmed: 9663793
J Exp Med. 2018 Mar 5;215(3):785-799
pubmed: 29382696
Int Immunol. 2003 Feb;15(2):145-58
pubmed: 12578844
J Vis Exp. 2018 Feb 28;(132):
pubmed: 29553537
Proc Natl Acad Sci U S A. 2015 Jun 30;112(26):8046-51
pubmed: 26080440
Immunity. 2015 Sep 15;43(3):527-40
pubmed: 26362264
Eur J Immunol. 2009 Feb;39(2):372-9
pubmed: 19130484
Exp Gerontol. 2004 Oct;39(10):1439-46
pubmed: 15501013
Nat Commun. 2018 May 2;9(1):1760
pubmed: 29720665
Eur J Immunol. 2015 Nov;45(11):3022-33
pubmed: 26332438
Cancer Res. 2014 Aug 1;74(15):4030-41
pubmed: 24947042
Nat Rev Immunol. 2017 Dec;17(12):733-745
pubmed: 28920588
Immunity. 2014 May 15;40(5):785-800
pubmed: 24816404
J Immunol. 2009 Mar 1;182(5):3047-54
pubmed: 19234201
Trends Immunol. 2018 Jun;39(6):446-459
pubmed: 29680462
Eur J Immunol. 2011 May;41(5):1352-64
pubmed: 21469120
Trends Immunol. 2016 Oct;37(10):690-702
pubmed: 27567182
EMBO Rep. 2019 Aug;20(8):e47379
pubmed: 31283095
Curr Protoc Immunol. 2012 Nov;Chapter 3:Unit3.19
pubmed: 23129154
Immunology. 2008 Oct;125(2):170-7
pubmed: 18397272
Eur J Immunol. 2015 Jan;45(1):89-100
pubmed: 25311225
Semin Immunol. 2012 Oct;24(5):350-5
pubmed: 22564707
Microb Pathog. 2016 Oct;99:236-246
pubmed: 27574777
Int J Mol Sci. 2020 Nov 24;21(23):
pubmed: 33255339
Immunity. 2019 Apr 16;50(4):892-906
pubmed: 30995505
Nat Commun. 2017 Mar 01;8:14760
pubmed: 28248310
J Immunol. 2008 Dec 1;181(11):7977-84
pubmed: 19017989
Immun Ageing. 2015 Dec 04;12:25
pubmed: 26640505
Int J Med Microbiol. 2020 Feb;310(2):151397
pubmed: 31974050
Mucosal Immunol. 2013 Nov;6(6):1191-201
pubmed: 23549449
Infect Immun. 1981 May;32(2):557-62
pubmed: 6788698

Auteurs

Camille Khairallah (C)

Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794, NY, USA.

Timothy H Chu (TH)

Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794, NY, USA.

Zhijuan Qiu (Z)

Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794, NY, USA.

Jessica N Imperato (JN)

Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794, NY, USA.

Daniella Yang (D)

Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794, NY, USA.

Brian S Sheridan (BS)

Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794, NY, USA. brian.sheridan@stonybrook.edu.

Classifications MeSH