Sphingolipids in Adipose: Kin or Foe?
Adipose tissues
Inflammation
Lipogenesis
Lipolysis
Metabolic diseases
Sphingolipids
Journal
Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103
Informations de publication
Date de publication:
2022
2022
Historique:
entrez:
3
5
2022
pubmed:
4
5
2022
medline:
6
5
2022
Statut:
ppublish
Résumé
Obesity research has shifted in recent years to address not only the total amount of adipose tissue present in an individual but also to include adipose tissue functions such as endocrine function and thermogenesis. Data suggest that sphingolipids are critical regulators of metabolic homeostasis, and that disruption of their levels is associated with metabolic disease. Abundant data from mouse models has revealed both beneficial and deleterious roles for sphingolipids in adipose function, and numerous human studies have shown that obesity alters circulating sphingolipid profiles. Sphingolipids comprise a large family of interrelated metabolites, and pinpointing specific functions for specific lipids will be required to fully exploit the therapeutic potential of targeting sphingolipids to treat obesity and related disorders.
Identifiants
pubmed: 35503171
doi: 10.1007/978-981-19-0394-6_2
doi:
Substances chimiques
Sphingolipids
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
15-29Subventions
Organisme : BLRD VA
ID : I01 BX000200
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL151243
Pays : United States
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.
Références
Hengst, J. A., Francy-Guilford, J. M., Fox, T. E., Wang, X., Conroy, E. J., & Yun, J. K. (2009). Sphingosine kinase 1 localized to the plasma membrane lipid raft microdomain overcomes serum deprivation induced growth inhibition. Archives of Biochemistry and Biophysics, 492(1–2), 62. https://doi.org/10.1016/J.ABB.2009.09.013
doi: 10.1016/J.ABB.2009.09.013
pubmed: 19782042
pmcid: 2787747
Takabe, K., Paugh, S. W., Milstien, S., & Spiegel, S. (2008). Inside-out signaling of sphingosine-1-phosphate: Therapeutic targets. Pharmacological Reviews. https://doi.org/10.1124/pr.107.07113
Wattenberg, B. W. (2010). Role of sphingosine kinase localization in sphingolipid signaling. World Journal of Biological Chemistry, 1(12), 362–368. https://doi.org/10.4331/wjbc.v1.i12.362
doi: 10.4331/wjbc.v1.i12.362
pubmed: 21537471
pmcid: 3083941
Maceyka, M., Harikumar, K. B., Milstien, S., & Spiegel, S. (2012). Sphingosine-1-phosphate signaling and its role in disease. Trends in Cell Biology. https://doi.org/10.1016/j.tcb.2011.09.003
Moseti, D., Regassa, A., & Kim, W. K. (2016). Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. International Journal of Molecular Sciences, 17(1), 124. https://doi.org/10.3390/IJMS17010124
doi: 10.3390/IJMS17010124
pmcid: 4730365
Sarjeant, K., & Stephens, J. M. (2012). Adipogenesis. Cold Spring Harbor Perspectives in Biology, 4(9), 8417. https://doi.org/10.1101/CSHPERSPECT.A008417
doi: 10.1101/CSHPERSPECT.A008417
Barbarroja, N., Rodriguez-Cuenca, S., Nygren, H., Camargo, A., Pirraco, A., Relat, J., Cuadrado, I., et al. (2015). Increased dihydroceramide/ceramide ratio mediated by defective expression of degs1 impairs adipocyte differentiation and function. Diabetes, 64(4), 1180–1192. https://doi.org/10.2337/DB14-0359
doi: 10.2337/DB14-0359
pubmed: 25352638
Wu, X., Sakharkar, M. K., Wabitsch, M., Yang, J., Sakharkar, M. K., Wabitsch, M., & Yang, J. (2020). Effects of sphingosine-1-phosphate on cell viability, differentiation, and gene expression of adipocytes. International Journal of Molecular Sciences, 21, 9284. https://doi.org/10.3390/ijms21239284
doi: 10.3390/ijms21239284
pmcid: 7730007
Wang, J., Badeanlou, L., Bielawski, J., Ciaraldi, T. P., & Samad, F. (2014). Sphingosine kinase 1 regulates adipose proinflammatory responses and insulin resistance. The American Journal of Physiology - Endocrinology and Metabolism, 306(7), 756–768. https://doi.org/10.1152/ajpendo.00549.2013
doi: 10.1152/ajpendo.00549.2013
Anderson, A. K., Lambert, J. M., Montefusco, D. J., Tran, B. N., Roddy, P., Holland, W. L., & Ashley Cowart, L. (2020). Depletion of adipocyte sphingosine kinase 1 leads to cell hypertrophy, impaired lipolysis, and nonalcoholic fatty liver disease. Journal of Lipid Research, 61(10), 1328–1340. https://doi.org/10.1194/jlr.RA120000875
doi: 10.1194/jlr.RA120000875
pubmed: 32690594
pmcid: 7529052
Ravichandran, S., Finlin, B. S., Kern, P. A., & Özcan, S. (2019). Sphk2−/− mice are protected from obesity and insulin resistance. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1865(3), 570–576. https://doi.org/10.1016/j.bbadis.2018.12.012
doi: 10.1016/j.bbadis.2018.12.012
pubmed: 30593892
Chaurasia, B., Kaddai, V. A., Lancaster, G. I., Henstridge, D. C., Sriram, S., Galam, D. L. A., Gopalan, V., et al. (2016). Adipocyte ceramides regulate subcutaneous adipose browning, inflammation, and metabolism. Cell Metabolism, 24(6), 820–834. https://doi.org/10.1016/j.cmet.2016.10.002
doi: 10.1016/j.cmet.2016.10.002
pubmed: 27818258
Chaurasia, B., Tippetts, T. S., Mayoral Monibas, R., Liu, J., Li, Y., Wang, L., Wilkerson, J. L., et al. (2019). Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science, 365(6451), 386–392. https://doi.org/10.1126/SCIENCE.AAV3722
doi: 10.1126/SCIENCE.AAV3722
pubmed: 31273070
pmcid: 6787918
Chaurasia, B., Ying, L., Talbot, C. L., Maschek, J. A., Cox, J., Schuchman, E. H., Hirabayashi, Y., Holland, W. L., & Summers, S. A. (2021). Ceramides are necessary and sufficient for diet-induced impairment of thermogenic adipocytes. Molecular Metabolism, 45, 101145. https://doi.org/10.1016/j.molmet.2020.101145
doi: 10.1016/j.molmet.2020.101145
pubmed: 33352310
Ussher, J. R., Timothy, R., Koves, V. J., Cadete, J., Zhang, L., Jaswal, J. S., Swyrd, S. J., Lopaschuk, D. G., et al. (2010). Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption. Diabetes. https://doi.org/10.2337/db09
Yang, G., Badeanlou, L., Bielawski, J., Roberts, A. J., Hannun, Y. A., & Samad, F. (2009). Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome. American Journal of Physiology. Endocrinology and Metabolism, 297(1), 2008. https://doi.org/10.1152/AJPENDO.91014.2008
doi: 10.1152/AJPENDO.91014.2008
Sprangers, B., Pirenne, J., van Etten, E., Mark Waer, C., Mathieu, A., & Billiau, D. (2008). Other forms of immunosuppression. Kidney Transplantation, 6, 333–349. https://doi.org/10.1016/B978-1-4160-3343-1.50025-6
doi: 10.1016/B978-1-4160-3343-1.50025-6
Goedecke, J. H., Gibson, A. S. C., Grobler, L., Collins, M., Noakes, T. D., & Lambert, E. V. (2000). Determinants of the variability in respiratory exchange ratio at rest and during exercise in trained athletes. American Journal of Physiology - Endocrinology and Metabolism, 279(6), 1325–1334. https://doi.org/10.1152/AJPENDO.2000.279.6.E1325/ASSET/IMAGES/LARGE/H11200203002.JPEG
doi: 10.1152/AJPENDO.2000.279.6.E1325/ASSET/IMAGES/LARGE/H11200203002.JPEG
Holland, W. L., Brozinick, J. T., Wang, L. P., Hawkins, E. D., Sargent, K. M., Liu, Y., Narra, K., et al. (2007). Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metabolism, 5(3), 167–179. https://doi.org/10.1016/J.CMET.2007.01.002
doi: 10.1016/J.CMET.2007.01.002
pubmed: 17339025
Anthonsen, M. W., Rönnstrand, L., Wernstedt, C., Degerman, E., & Holm, C. (1998). Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro. Journal of Biological Chemistry, 273(1), 215–221. https://doi.org/10.1074/JBC.273.1.215
doi: 10.1074/JBC.273.1.215
Watt, M. J., Holmes, A. G., Pinnamaneni, S. K., Garnham, A. P., Steinberg, G. R., Kemp, B. E., & Febbraio, M. A. (2006). Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue. American Journal of Physiology - Endocrinology and Metabolism, 290(3), 500–508. https://doi.org/10.1152/AJPENDO.00361.2005/ASSET/IMAGES/LARGE/ZH10030644430004.JPEG
doi: 10.1152/AJPENDO.00361.2005/ASSET/IMAGES/LARGE/ZH10030644430004.JPEG
Vroegrijk, I. O. C. M., Van Klinken, J. B., Van Diepen, J. A., Van Den Berg, S. A. A., Febbraio, M., Steinbusch, L. K. M., Glatz, J. F. C., et al. (2013). CD36 is important for adipocyte recruitment and affects lipolysis. Obesity, 21, 2037–2045. https://doi.org/10.1002/oby.20354
doi: 10.1002/oby.20354
pubmed: 23512311
Funcke, J. B., & Scherer, P. E. (2019). Beyond adiponectin and leptin: Adipose tissue-derived mediators of inter-organ communication. Journal of Lipid Research, 60(10), 1648–1697. https://doi.org/10.1194/jlr.R094060
doi: 10.1194/jlr.R094060
pubmed: 31209153
pmcid: 6795086
Romacho, T., Elsen, M., Röhrborn, D., & Eckel, J. (2014). Adipose tissue and its role in organ crosstalk. Acta Physiologica (Oxford, England), 210(4), 733–753. https://doi.org/10.1111/APHA.12246
doi: 10.1111/APHA.12246
Zhang, W., Mottillo, E. P., Zhao, J., Gartung, A., VanHecke, G. C., Lee, J. F., Maddipati, K. R., et al. (2014). Adipocyte lipolysis-stimulated interleukin-6 production requires sphingosine kinase 1 activity. Journal of Biological Chemistry, 289(46), 32178–32185. https://doi.org/10.1074/jbc.M114.601096
doi: 10.1074/jbc.M114.601096
Samad, F., Hester, K. D., Yang, G., Hannun, Y. A., & Bielawski, J. (2006). Altered adipose and plasma sphingolipid metabolism in obesity: A potential mechanism for cardiovascular and metabolic risk. Diabetes, 55(9), 2579–2587. https://doi.org/10.2337/DB06-0330
doi: 10.2337/DB06-0330
pubmed: 16936207
Gohlke, S., Zagoriy, V., Inostroza, A. C., Méret, M., Mancini, C., Japtok, L., Schumacher, F., et al. (2019). Identification of functional lipid metabolism biomarkers of brown adipose tissue aging. Molecular Metabolism, 24(June), 1–17. https://doi.org/10.1016/j.molmet.2019.03.011
doi: 10.1016/j.molmet.2019.03.011
pubmed: 31003944
pmcid: 6531832
Fisher, F., Folliott, F., Kleiner, S., Douris, N., Fox, E. C., Mepani, R. J., Verdeguer, F., Jun, W., et al. (2012). FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes and Development. https://doi.org/10.1101/gad.177857.111
Fischer, A. W., Cannon, B., & Nedergaard, J. (2018). Optimal housing temperatures for mice to mimic the thermal environment of humans: An experimental study. Molecular Metabolism, 7(January), 161–170. https://doi.org/10.1016/j.molmet.2017.10.009
doi: 10.1016/j.molmet.2017.10.009
pubmed: 29122558
Lodhi, I. J., & Semenkovich, C. F. (2009). Why we should put clothes on mice. Cell Metabolism. https://doi.org/10.1016/j.cmet.2009.01.004
Christoffersen, C., Federspiel, C. K., Borup, A., Holst, B., Heeren, J., & Nielsen, L. B. (2018). The apolipoprotein M/S1P axis controls triglyceride metabolism and brown fat activity. Cell Reports, 22, 175–188. https://doi.org/10.1016/j.celrep.2017.12.029
doi: 10.1016/j.celrep.2017.12.029
pubmed: 29298420
Karuna, R., Park, R., Othman, A., Holleboom, A. G., Motazacker, M. M., Sutter, I., Kuivenhoven, J. A., et al. (2011). Plasma levels of sphingosine-1-phosphate and apolipoprotein M in patients with monogenic disorders of HDL metabolism. Atherosclerosis, 219(2), 855–863. https://doi.org/10.1016/J.ATHEROSCLEROSIS.2011.08.049
doi: 10.1016/J.ATHEROSCLEROSIS.2011.08.049
pubmed: 21944699
Blachnio-Zabielska, A. U., Koutsari, C., Tchkonia, T., & Jensen, M. D. (2012). Sphingolipid content of human adipose tissue: Relationship to adiponectin and insulin resistance. Obesity, 20(12), 2341–2347. https://doi.org/10.1038/OBY.2012.126
doi: 10.1038/OBY.2012.126
pubmed: 22677645
Błachnio-Zabielska, A. U., Pułka, M., Baranowski, M., Nikołajuk, A., Zabielski, P., Górska, M., & Górski, J. (2012). Ceramide metabolism is affected by obesity and diabetes in human adipose tissue. Journal of Cellular Physiology, 227(2), 550–557. https://doi.org/10.1002/JCP.22745
doi: 10.1002/JCP.22745
pubmed: 21437908