Optimal Use of 2',7'-Dichlorofluorescein Diacetate in Cultured Hepatocytes.
2′,7′-Dichlorodihydrofluorescein-diacetate
2′,7′-Dichlorofluorescein
Cellular uptake and efflux
Fluorogenic redox probe
Hepatocytes
Oxidative and nitrosative stress
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2022
2022
Historique:
entrez:
3
5
2022
pubmed:
4
5
2022
medline:
6
5
2022
Statut:
ppublish
Résumé
Oxidative stress is a state that arises when the production of reactive transients overwhelms the cell's capacity to neutralize the oxidants and radicals. This state often coincides with the pathogenesis and perpetuation of numerous chronic diseases. On the other hand, medical interventions such as radiation therapy and photodynamic therapy generate radicals to selectively damage and kill diseased tissue. As a result, the qualification and quantification of oxidative stress are of great interest to those studying disease mechanisms as well as therapeutic interventions. 2',7'-Dichlorodihydrofluorescein-diacetate (DCFH
Identifiants
pubmed: 35505044
doi: 10.1007/978-1-0716-2099-1_39
doi:
Substances chimiques
Fluoresceins
0
diacetyldichlorofluorescein
2044-85-1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
721-747Informations de copyright
© 2022. Springer Science+Business Media, LLC, part of Springer Nature.
Références
Reiniers MJ, van Golen RF, van Gulik TM, Heger M (2014) Reactive oxygen and nitrogen species in steatotic hepatocytes: a molecular perspective on the pathophysiology of ischemia-reperfusion injury in the fatty liver. Antioxid Redox Signal 21(7):1119–1142. https://doi.org/10.1089/ars.2013.5486
doi: 10.1089/ars.2013.5486
pubmed: 24294945
pmcid: 4123468
Zangar RC, Davydov DR, Verma S (2004) Mechanisms that regulate production of reactive oxygen species by cytochrome P450. Toxicol Appl Pharmacol 199(3):316–331. https://doi.org/10.1016/j.taap.2004.01.018
doi: 10.1016/j.taap.2004.01.018
pubmed: 15364547
Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552(Pt 2):335–344. https://doi.org/10.1113/jphysiol.2003.049478
doi: 10.1113/jphysiol.2003.049478
pubmed: 14561818
pmcid: 2343396
Kakhlon O, Cabantchik ZI (2002) The labile iron pool: characterization, measurement, and participation in cellular processes(1). Free Radic Biol Med 33(8):1037–1046. https://doi.org/10.1016/s0891-5849(02)01006-7
doi: 10.1016/s0891-5849(02)01006-7
pubmed: 12374615
Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313. https://doi.org/10.1152/physrev.00044.2005
doi: 10.1152/physrev.00044.2005
pubmed: 17237347
Kloek JJ, Marechal X, Roelofsen J, Houtkooper RH, van Kuilenburg AB, Kulik W, Bezemer R, Neviere R, van Gulik TM, Heger M (2012) Cholestasis is associated with hepatic microvascular dysfunction and aberrant energy metabolism before and during ischemia-reperfusion. Antioxid Redox Signal 17(8):1109–1123. https://doi.org/10.1089/ars.2011.4291
doi: 10.1089/ars.2011.4291
pubmed: 22482833
Weijer R, Broekgaarden M, Kos M, van Vught R, Rauws EA, Breukink EJ, van Gulik TM, Storm G, Heger M (2015) Enhancing photodynamic therapy of refractory solid cancers: combining second-generation photosensitizers with multi-targeted liposomal delivery. J Photochem Photobiol C 23:103–131. https://doi.org/10.1016/j.jphotochemrev.2015.05.002
doi: 10.1016/j.jphotochemrev.2015.05.002
Kruger CA, Abrahamse H (2018) Utilisation of targeted nanoparticle photosensitiser drug delivery systems for the enhancement of photodynamic therapy. Molecules 23(10). https://doi.org/10.3390/molecules23102628
Weijer R, Broekgaarden M, van Golen RF, Bulle E, Nieuwenhuis E, Jongejan A, Moerland PD, van Kampen AH, van Gulik TM, Heger M (2015) Low-power photodynamic therapy induces survival signaling in perihilar cholangiocarcinoma cells. BMC Cancer 15:1014. https://doi.org/10.1186/s12885-015-1994-2
doi: 10.1186/s12885-015-1994-2
pubmed: 26705830
pmcid: 4691291
Weijer R, Clavier S, Zaal EA, Pijls MM, van Kooten RT, Vermaas K, Leen R, Jongejan A, Moerland PD, van Kampen AH, van Kuilenburg AB, Berkers CR, Lemeer S, Heger M (2017) Multi-OMIC profiling of survival and metabolic signaling networks in cells subjected to photodynamic therapy. Cell Mol Life Sci 74(6):1133–1151. https://doi.org/10.1007/s00018-016-2401-0
doi: 10.1007/s00018-016-2401-0
pubmed: 27803950
Broekgaarden M, Weijer R, Krekorian M, van den Ijssel B, Kos M, Alles LK, van Wijk AC, Bikadi Z, Hazai E, van Gulik TM, Heger M (2016) Inhibition of hypoxia-inducible factor 1 with acriflavine sensitizes hypoxic tumor cells to photodynamic therapy with zinc phthalocyanine-encapsulating cationic liposomes. Nano Res 9(6):1639–1662. https://doi.org/10.1007/s12274-016-1059-0
doi: 10.1007/s12274-016-1059-0
Weijer R, Broekgaarden M, Krekorian M, Alles LK, van Wijk AC, Mackaaij C, Verheij J, van der Wal AC, van Gulik TM, Storm G, Heger M (2016) Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy. Oncotarget 7(3):3341–3356. https://doi.org/10.18632/oncotarget.6490
doi: 10.18632/oncotarget.6490
pubmed: 26657503
Broekgaarden M, de Kroon AI, Gulik TM, Heger M (2014) Development and in vitro proof-of-concept of interstitially targeted zinc-phthalocyanine liposomes for photodynamic therapy. Curr Med Chem 21(3):377–391. https://doi.org/10.2174/09298673113209990211
doi: 10.2174/09298673113209990211
pubmed: 23931271
Song C, Xu W, Wu H, Wang X, Gong Q, Liu C, Liu J, Zhou L (2020) Photodynamic therapy induces autophagy-mediated cell death in human colorectal cancer cells via activation of the ROS/JNK signaling pathway. Cell Death Dis 11(10):938. https://doi.org/10.1038/s41419-020-03136-y
doi: 10.1038/s41419-020-03136-y
pubmed: 33130826
pmcid: 7603522
Liu C, Cao Y, Cheng Y, Wang D, Xu T, Su L, Zhang X, Dong H (2020) An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy. Nat Commun 11(1):1735. https://doi.org/10.1038/s41467-020-15591-4
doi: 10.1038/s41467-020-15591-4
pubmed: 32269223
pmcid: 7142144
Zou H, Wang F, Zhou JJ, Liu X, He Q, Wang C, Zheng YW, Wen Y, Xiong L (2020) Application of photodynamic therapy for liver malignancies. J Gastrointest Oncol 11(2):431–442. https://doi.org/10.21037/jgo.2020.02.10
doi: 10.21037/jgo.2020.02.10
pubmed: 32399283
pmcid: 7212095
Ogbodu RO, Nitzsche B, Ma A, Atilla D, Gurek AG, Hopfner M (2020) Photodynamic therapy of hepatocellular carcinoma using tetra-triethyleneoxysulfonyl zinc phthalocyanine as photosensitizer. J Photochem Photobiol B 208:111915. https://doi.org/10.1016/j.jphotobiol.2020.111915
doi: 10.1016/j.jphotobiol.2020.111915
pubmed: 32480203
Fadel M, Fadeel DA, Ibrahim M, Hathout RM, El-Kholy AI (2020) One-step synthesis of polypyrrole-coated gold nanoparticles for use as a photothermally active nano-system. Int J Nanomedicine 15:2605–2615. https://doi.org/10.2147/IJN.S250042
doi: 10.2147/IJN.S250042
pubmed: 32368043
pmcid: 7173958
Wardman P (2007) Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med 43(7):995–1022. https://doi.org/10.1016/j.freeradbiomed.2007.06.026
doi: 10.1016/j.freeradbiomed.2007.06.026
pubmed: 17761297
Gomes A, Fernandes E, Lima JL (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65(2-3):45–80. https://doi.org/10.1016/j.jbbm.2005.10.003
doi: 10.1016/j.jbbm.2005.10.003
pubmed: 16297980
Wrona M, Patel K, Wardman P (2005) Reactivity of 2′,7′-dichlorodihydrofluorescein and dihydrorhodamine 123 and their oxidized forms toward carbonate, nitrogen dioxide, and hydroxyl radicals. Free Radic Biol Med 38(2):262–270. https://doi.org/10.1016/j.freeradbiomed.2004.10.022
doi: 10.1016/j.freeradbiomed.2004.10.022
pubmed: 15607909
Reiniers MJ, van Golen RF, Bonnet S, Broekgaarden M, van Gulik TM, Egmond MR, Heger M (2017) Preparation and practical applications of 2′,7'-dichlorodihydrofluorescein in redox assays. Anal Chem 89(7):3853–3857. https://doi.org/10.1021/acs.analchem.7b00043
doi: 10.1021/acs.analchem.7b00043
pubmed: 28224799
pmcid: 5382573
Wrona M, Patel KB, Wardman P (2008) The roles of thiol-derived radicals in the use of 2′,7′-dichlorodihydrofluorescein as a probe for oxidative stress. Free Radic Biol Med 44(1):56–62. https://doi.org/10.1016/j.freeradbiomed.2007.09.005
doi: 10.1016/j.freeradbiomed.2007.09.005
pubmed: 18045547
Burkitt MJ, Wardman P (2001) Cytochrome C is a potent catalyst of dichlorofluorescein oxidation: implications for the role of reactive oxygen species in apoptosis. Biochem Biophys Res Commun 282(1):329–333. https://doi.org/10.1006/bbrc.2001.4578
doi: 10.1006/bbrc.2001.4578
pubmed: 11264011
Rota C, Chignell CF, Mason RP (1999) Evidence for free radical formation during the oxidation of 2′-7′-dichlorofluorescein to the fluorescent dye 2′-7′-dichlorofluorescein by horseradish peroxidase: possible implications for oxidative stress measurements. Free Radic Biol Med 27(7–8):873–881. https://doi.org/10.1016/s0891-5849(99)00137-9
doi: 10.1016/s0891-5849(99)00137-9
pubmed: 10515592
Wrona M, Wardman P (2006) Properties of the radical intermediate obtained on oxidation of 2′,7′-dichlorodihydrofluorescein, a probe for oxidative stress. Free Radic Biol Med 41(4):657–667. https://doi.org/10.1016/j.freeradbiomed.2006.05.006
doi: 10.1016/j.freeradbiomed.2006.05.006
pubmed: 16863999
Mchedlov-Petrossyan NO, Rubtsov MI, Lukatskaya LL (1992) Ionization and tautomerism of chloro-derivatives of fluorescein in water and aqueous acetone. Dyes Pigments 18:179–198
doi: 10.1016/0143-7208(92)87002-I
Hafer K, Iwamoto KS, Schiestl RH (2008) Refinement of the dichlorofluorescein assay for flow cytometric measurement of reactive oxygen species in irradiated and bystander cell populations. Radiat Res 169(4):460–468. https://doi.org/10.1667/RR1212.1
doi: 10.1667/RR1212.1
pubmed: 18363435
Hempel SL, Buettner GR, O’Malley YQ, Wessels DA, Flaherty DM (1999) Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′,7′-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic Biol Med 27(1–2):146–159. https://doi.org/10.1016/s0891-5849(99)00061-1
doi: 10.1016/s0891-5849(99)00061-1
pubmed: 10443931
Karlsson M, Kurz T, Brunk UT, Nilsson SE, Frennesson CI (2010) What does the commonly used DCF test for oxidative stress really show? Biochem J 428(2):183–190. https://doi.org/10.1042/BJ20100208
doi: 10.1042/BJ20100208
pubmed: 20331437
Keller A, Mohamed A, Drose S, Brandt U, Fleming I, Brandes RP (2004) Analysis of dichlorodihydrofluorescein and dihydrocalcein as probes for the detection of intracellular reactive oxygen species. Free Radic Res 38(12):1257–1267. https://doi.org/10.1080/10715760400022145
doi: 10.1080/10715760400022145
pubmed: 15763950
LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescein as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5(2):227–231. https://doi.org/10.1021/tx00026a012
doi: 10.1021/tx00026a012
pubmed: 1322737
Myhre O, Andersen JM, Aarnes H, Fonnum F (2003) Evaluation of the probes 2′,7′-dichlorofluorescein diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol 65(10):1575–1582. https://doi.org/10.1016/s0006-2952(03)00083-2
doi: 10.1016/s0006-2952(03)00083-2
pubmed: 12754093
Royall JA, Ischiropoulos H (1993) Evaluation of 2′,7′-dichlorofluorescein and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys 302(2):348–355. https://doi.org/10.1006/abbi.1993.1222
doi: 10.1006/abbi.1993.1222
pubmed: 8387741
Swift LM, Sarvazyan N (2000) Localization of dichlorofluorescein in cardiac myocytes: implications for assessment of oxidative stress. Am J Physiol Heart Circ Physiol 278(3):H982–H990. https://doi.org/10.1152/ajpheart.2000.278.3.H982
doi: 10.1152/ajpheart.2000.278.3.H982
pubmed: 10710368
Zhu H, Bannenberg GL, Moldeus P, Shertzer HG (1994) Oxidation pathways for the intracellular probe 2′,7′-dichlorofluorescein. Arch Toxicol 68(9):582–587. https://doi.org/10.1007/s002040050118
doi: 10.1007/s002040050118
pubmed: 7998826
Roth M, Obaidat A, Hagenbuch B (2012) OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol 165(5):1260–1287. https://doi.org/10.1111/j.1476-5381.2011.01724.x
doi: 10.1111/j.1476-5381.2011.01724.x
pubmed: 22013971
pmcid: 3372714
Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D, Cannie I, Guyomard C, Lucas J, Trepo C, Guguen-Guillouzo C (2002) Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci U S A 99(24):15655–15660. https://doi.org/10.1073/pnas.232137699
doi: 10.1073/pnas.232137699
pubmed: 12432097
pmcid: 137772
Poggendorff JC. Annalen der Physik; 1852. https://www.forgottenbooks.com/en/books/AnnalenderPhysikundChemie1852_11327774
van Raath MI, Weijer R, Nguyen GH, Choi B, de Kroon AI, Heger M (2016) Tranexamic acid-encapsulating thermosensitive liposomes for site-specific pharmaco-laser therapy of port wine stains. J Biomed Nanotechnol 12(8):1617–1640. https://doi.org/10.1166/jbn.2016.2277
doi: 10.1166/jbn.2016.2277
pubmed: 29342342
pmcid: 5457158
Heger M, Salles II, van Vuure W, Hamelers IH, de Kroon AI, Deckmyn H, Beek JF (2009) On the interaction of fluorophore-encapsulating PEGylated lecithin liposomes with hamster and human platelets. Microvasc Res 78(1):57–66. https://doi.org/10.1016/j.mvr.2009.02.006
doi: 10.1016/j.mvr.2009.02.006
pubmed: 19281828
van Golen RF, van Gulik TM, Heger M (2012) Mechanistic overview of reactive species-induced degradation of the endothelial glycocalyx during hepatic ischemia/reperfusion injury. Free Radic Biol Med 52(8):1382–1402. https://doi.org/10.1016/j.freeradbiomed.2012.01.013
doi: 10.1016/j.freeradbiomed.2012.01.013
pubmed: 22326617
Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord ENJ, Smith AC, Eyassu F, Shirley R, Hu CH, Dare AJ, James AM, Rogatti S, Hartley RC, Eaton S, Costa ASH, Brookes PS, Davidson SM, Duchen MR, Saeb-Parsy K, Shattock MJ, Robinson AJ, Work LM, Frezza C, Krieg T, Murphy MP (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515(7527):431–435. https://doi.org/10.1038/nature13909
doi: 10.1038/nature13909
pubmed: 25383517
pmcid: 4255242
Grzelak A, Rychlik B, Bartosz G (2001) Light-dependent generation of reactive oxygen species in cell culture media. Free Radic Biol Med 30(12):1418–1425. https://doi.org/10.1016/s0891-5849(01)00545-7
doi: 10.1016/s0891-5849(01)00545-7
pubmed: 11390187
Wardman P, Candeias LP (1996) Fenton chemistry: an introduction. Radiat Res 145(5):523–531
doi: 10.2307/3579270
pubmed: 8619017
Hua Long L, Halliwell B (2001) Oxidation and generation of hydrogen peroxide by thiol compounds in commonly used cell culture media. Biochem Biophys Res Commun 286(5):991–994. https://doi.org/10.1006/bbrc.2001.5514
doi: 10.1006/bbrc.2001.5514
pubmed: 11527398
Long LH, Halliwell B (2009) Artefacts in cell culture: pyruvate as a scavenger of hydrogen peroxide generated by ascorbate or epigallocatechin gallate in cell culture media. Biochem Biophys Res Commun 388(4):700–704. https://doi.org/10.1016/j.bbrc.2009.08.069
doi: 10.1016/j.bbrc.2009.08.069
pubmed: 19695227
Kirsch M, Lomonosova EE, Korth HG, Sustmann R, de Groot H (1998) Hydrogen peroxide formation by reaction of peroxynitrite with HEPES and related tertiary amines. Implications for a general mechanism. J Biol Chem 273(21):12716–12724. https://doi.org/10.1074/jbc.273.21.12716
doi: 10.1074/jbc.273.21.12716
pubmed: 9582295
Keynes RG, Griffiths C, Garthwaite J (2003) Superoxide-dependent consumption of nitric oxide in biological media may confound in vitro experiments. Biochem J 369(Pt 2):399–406. https://doi.org/10.1042/BJ20020933
doi: 10.1042/BJ20020933
pubmed: 12366375
pmcid: 1223083
Edwards AM, Silva E (2001) Effect of visible light on selected enzymes, vitamins and amino acids. J Photochem Photobiol B 63(1-3):126–131. https://doi.org/10.1016/s1011-1344(01)00209-3
doi: 10.1016/s1011-1344(01)00209-3
pubmed: 11684459
Baker CJ, Mock NM, Roberts DP, Deahl KL, Hapeman CJ, Schmidt WF, Kochansky J (2007) Interference by Mes [2-(4-morpholino)ethanesulfonic acid] and related buffers with phenolic oxidation by peroxidase. Free Radic Biol Med 43(9):1322–1327. https://doi.org/10.1016/j.freeradbiomed.2007.07.020
doi: 10.1016/j.freeradbiomed.2007.07.020
pubmed: 17893045
Zamek-Gliszczynski MJ, Xiong H, Patel NJ, Turncliff RZ, Pollack GM, Brouwer KL (2003) Pharmacokinetics of 5 (and 6)-carboxy-2′,7′-dichlorofluorescein and its diacetate promoiety in the liver. J Pharmacol Exp Ther 304(2):801–809. https://doi.org/10.1124/jpet.102.044107
doi: 10.1124/jpet.102.044107
pubmed: 12538836
Chen X, Zhong Z, Xu Z, Chen L, Wang Y (2010) 2′,7'-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: forty years of application and controversy. Free Radic Res 44(6):587–604. https://doi.org/10.3109/10715761003709802
doi: 10.3109/10715761003709802
pubmed: 20370560
Hart SN, Li Y, Nakamoto K, Subileau EA, Steen D, Zhong XB (2010) A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues. Drug Metab Dispos 38(6):988–994. https://doi.org/10.1124/dmd.109.031831
doi: 10.1124/dmd.109.031831
pubmed: 20228232
pmcid: 2879958
Williams FM, Mutch E, Blain PG (1991) Esterase activity in rat hepatocytes. Biochem Pharmacol 41(4):527–531. https://doi.org/10.1016/0006-2952(91)90624-e
doi: 10.1016/0006-2952(91)90624-e
pubmed: 1997002
De Bruyn T, Fattah S, Stieger B, Augustijns P, Annaert P (2011) Sodium fluorescein is a probe substrate for hepatic drug transport mediated by OATP1B1 and OATP1B3. J Pharm Sci 100(11):5018–5030. https://doi.org/10.1002/jps.22694
doi: 10.1002/jps.22694
pubmed: 21837650
Du Y, Han R, Ng S, Ni J, Sun W, Wohland T, Ong SH, Kuleshova L, Yu H (2007) Identification and characterization of a novel prespheroid 3-dimensional hepatocyte monolayer on galactosylated substratum. Tissue Eng 13(7):1455–1468. https://doi.org/10.1089/ten.2006.0381
doi: 10.1089/ten.2006.0381
pubmed: 17518743
Chahal PS, Neal MJ, Kohner EM (1985) Metabolism of fluorescein after intravenous administration. Invest Ophthalmol Vis Sci 26(5):764–768
pubmed: 3997424
Sabnis RW (2015) Handbook of fluorescent dyes and probes. Wiley, Hoboken
doi: 10.1002/9781119007104
Kachel K, Asuncion-Punzalan E, London E (1998) The location of fluorescence probes with charged groups in model membranes. Biochim Biophys Acta 1374(1-2):63–76. https://doi.org/10.1016/s0005-2736(98)00126-6
doi: 10.1016/s0005-2736(98)00126-6
pubmed: 9814853
Nibourg GA, Chamuleau RA, van Gulik TM, Hoekstra R (2012) Proliferative human cell sources applied as biocomponent in bioartificial livers: a review. Expert Opin Biol Ther 12(7):905–921. https://doi.org/10.1517/14712598.2012.685714
doi: 10.1517/14712598.2012.685714
pubmed: 22650303
Gasbarrini A, Borle AB, Farghali H, Bender C, Francavilla A, Van Thiel D (1992) Effect of anoxia on intracellular ATP, Na+i, Ca2+i, Mg2+i, and cytotoxicity in rat hepatocytes. J Biol Chem 267(10):6654–6663
doi: 10.1016/S0021-9258(19)50477-X
pubmed: 1637381
Prochazkova J, Kubala L, Kotasova H, Gudernova I, Sramkova Z, Pekarova M, Sarkadi B, Pachernik J (2011) ABC transporters affect the detection of intracellular oxidants by fluorescent probes. Free Radic Res 45(7):779–787. https://doi.org/10.3109/10715762.2011.579120
doi: 10.3109/10715762.2011.579120
pubmed: 21568630
Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85. https://doi.org/10.1016/0003-2697(85)90442-7
doi: 10.1016/0003-2697(85)90442-7
pubmed: 3843705
Kamath BV, Mehta JD, Bafna SL (1975) Ultraviolet absorption spectra: some substituted benzoic acids. J Chem Technol Biotechnol 25:743–751
Edelhoch H (1967) Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6(7):1948–1954. https://doi.org/10.1021/bi00859a010
doi: 10.1021/bi00859a010
pubmed: 6049437
Leonhardt H, Gordon L, Livingston R (1971) Acid-base equilibriums of fluorescein and 2′, 7′-dichlorofluorescein in their ground and fluorescent states. J Phys Chem 75:245–249
doi: 10.1021/j100672a011
Nishimura Y, Romer LH, Lemasters JJ (1998) Mitochondrial dysfunction and cytoskeletal disruption during chemical hypoxia to cultured rat hepatic sinusoidal endothelial cells: the pH paradox and cytoprotection by glucose, acidotic pH, and glycine. Hepatology 27(4):1039–1049. https://doi.org/10.1002/hep.510270420
doi: 10.1002/hep.510270420
pubmed: 9537444
Heijnen BH, Elkhaloufi Y, Straatsburg IH, Van Gulik TM (2002) Influence of acidosis and hypoxia on liver ischemia and reperfusion injury in an in vivo rat model. J Appl Physiol (1985) 93 (1):319-323. doi: https://doi.org/10.1152/japplphysiol.01112.2001
Garlick PB, Radda GK, Seeley PJ (1979) Studies of acidosis in the ischaemic heart by phosphorus nuclear magnetic resonance. Biochem J 184(3):547–554. https://doi.org/10.1042/bj1840547
doi: 10.1042/bj1840547
pubmed: 44193
pmcid: 1161836
Pieper GM, Todd GL, Wu ST, Salhany JM, Clayton FC, Eliot RS (1980) Attenuation of myocardial acidosis by propranolol during ischaemic arrest and reperfusion: evidence with 31P nuclear magnetic resonance. Cardiovasc Res 14(11):646–653. https://doi.org/10.1093/cvr/14.11.646
doi: 10.1093/cvr/14.11.646
pubmed: 7226174
Raghunand N, Altbach MI, van Sluis R, Baggett B, Taylor CW, Bhujwalla ZM, Gillies RJ (1999) Plasmalemmal pH-gradients in drug-sensitive and drug-resistant MCF-7 human breast carcinoma xenografts measured by 31P magnetic resonance spectroscopy. Biochem Pharmacol 57(3):309–312. https://doi.org/10.1016/s0006-2952(98)00306-2
doi: 10.1016/s0006-2952(98)00306-2
pubmed: 9890558
Griffiths JR (1991) Are cancer cells acidic? Br J Cancer 64(3):425–427. https://doi.org/10.1038/bjc.1991.326
doi: 10.1038/bjc.1991.326
pubmed: 1911181
pmcid: 1977628
Mindell JA (2012) Lysosomal acidification mechanisms. Annu Rev Physiol 74:69–86. https://doi.org/10.1146/annurev-physiol-012110-142317
doi: 10.1146/annurev-physiol-012110-142317
pubmed: 22335796
Oei GT, Heger M, van Golen RF, Alles LK, Flick M, van der Wal AC, van Gulik TM, Hollmann MW, Preckel B, Weber NC (2015) Reduction of cardiac cell death after helium postconditioning in rats: transcriptional analysis of cell death and survival pathways. Mol Med 20:516–526. https://doi.org/10.2119/molmed.2014.00057
doi: 10.2119/molmed.2014.00057
pubmed: 25171109
pmcid: 4365058
Olthof PB, van Golen RF, Meijer B, van Beek AA, Bennink RJ, Verheij J, van Gulik TM, Heger M (2017) Warm ischemia time-dependent variation in liver damage, inflammation, and function in hepatic ischemia/reperfusion injury. Biochim Biophys Acta Mol basis Dis 1863(2):375–385. https://doi.org/10.1016/j.bbadis.2016.10.022
doi: 10.1016/j.bbadis.2016.10.022
pubmed: 27989959
Welch KD, Davis TZ, Aust SD (2002) Iron autoxidation and free radical generation: effects of buffers, ligands, and chelators. Arch Biochem Biophys 397(2):360–369. https://doi.org/10.1006/abbi.2001.2694
doi: 10.1006/abbi.2001.2694
pubmed: 11795895
Grady JK, Chasteen ND, Harris DC (1988) Radicals from “Good’s” buffers. Anal Biochem 173(1):111–115. https://doi.org/10.1016/0003-2697(88)90167-4
doi: 10.1016/0003-2697(88)90167-4
pubmed: 2847586
Zhao G, Chasteen ND (2006) Oxidation of Good’s buffers by hydrogen peroxide. Anal Biochem 349(2):262–267. https://doi.org/10.1016/j.ab.2005.10.005
doi: 10.1016/j.ab.2005.10.005
pubmed: 16289439
Radi R (1998) Peroxynitrite reactions and diffusion in biology. Chem Res Toxicol 11(7):720–721. https://doi.org/10.1021/tx980096z
doi: 10.1021/tx980096z
pubmed: 9671533