Extracting the Dynamic Motion of Proteins Using Normal Mode Analysis.

Computational chemistry Conformational analysis Elastic network model Molecular dynamics Normal mode analysis

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2022
Historique:
entrez: 4 5 2022
pubmed: 5 5 2022
medline: 7 5 2022
Statut: ppublish

Résumé

Normal mode analysis (NMA) is a technique for describing the conformational states accessible to a protein in a minimum energy conformation. NMA gives results similar to those produced by principal components analysis of a molecular dynamics simulation, but with only a fraction of the computational effort. Here, we provide a brief overview of the theory and describe three methods for carrying out NMA, including the use of one of the on-line services, the use of off-line software for calculating the projection of the modes calculated from one conformation onto another, and an all-atom NMA calculated using GROMACS. For all three methods, we will use the E1·2Ca

Identifiants

pubmed: 35507265
doi: 10.1007/978-1-0716-2095-3_9
doi:

Substances chimiques

Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

213-231

Informations de copyright

© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Bonomi M, Camilloni C (eds) (2019) Biomolecular simulations: methods and protocols, methods in molecular biology, vol 2022. Humana Press, New York, NY
Cui Q, Bahar I (eds) (2006) Normal mode analysis. Theory and applications to biological and chemical systems. Chapman & Hall/CRC, Boca Raton, FL
González MA (2011) Force fields and molecular dynamics simulations. Collect SFN 12:169–200
doi: 10.1051/sfn/201112009
Zheng W, Brooks BR, Thirumalai D (2006) Low-frequency normal modes that describe allosteric transitions in biological nanomachines are robust to sequence variations. Proc Natl Acad Sci U S A 103:7664–7669
doi: 10.1073/pnas.0510426103
Tirion MM (1996) Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys Rev Lett 77:1905–1908
doi: 10.1103/PhysRevLett.77.1905
Durand P, Trinquier G, Sanejouand YH (1994) A new approach for determining low-frequency normal modes in macromolecules. Biopolymers 34:759–771
doi: 10.1002/bip.360340608
Suhre K, Sanejouand YH (2004) ElNémo: a normal mode web server for protein movements analysis and the generation of templates for molecular replacement. Nucleic Acids Res 32:W610–W614
Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Folding Des 2:173–181
doi: 10.1016/S1359-0278(97)00024-2
Liu Q, Liang C, Zhou L (2020) Structural and functional analysis of the Hsp70/Hsp40 chaperone system. Protein Sci 29:378–390
doi: 10.1002/pro.3725
Kityk R, Kopp J, Sinning I et al (2012) Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol Cell 48:863–874
doi: 10.1016/j.molcel.2012.09.023
Bertaccini EJ, Trudell JR, Lindahl E (2007) Normal-mode analysis of the glycine alpha1 receptor by three separate methods. J Chem Inf Model 47:1572–1579
doi: 10.1021/ci600566j
Skjaerven L, Martinez A, Reuter N (2011) Principal component and normal mode analysis of proteins; a quantitative comparison using the GroEL subunit. Proteins 79:232–243
doi: 10.1002/prot.22875
Toyoshima C, Nakasako M, Nomura H et al (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405:647–655
doi: 10.1038/35015017
Li G, Cui Q (2002) A coarse-grained normal mode approach for macromolecules: an efficient implementation and application to Ca
doi: 10.1016/S0006-3495(02)75257-0
Reuter N, Hinsen K, Lacapère JJ (2003) Transconformations of the SERCA1 Ca-ATPase: a normal mode study. Biophys J 85:2186–2197
doi: 10.1016/S0006-3495(03)74644-X
Toyoshima C, Mizutani T (2004) Crystal structure of the calcium pump with a bound ATP analogue. Nature 430:529–535
doi: 10.1038/nature02680
Toyoshima C, Nomura H, Tsuda T (2004) Lumenal gating mechanism revealed incalcium pump crystal structures with phosphate analogues. Nature 432:361–368
doi: 10.1038/nature02981
Zheng W, Brooks BR, Hummer G (2007) Protein conformational transitions explored by mixed elastic network models. Proteins 69:43–57
doi: 10.1002/prot.21465
Lindahl E, Azuara C, Koehl P et al (2006) NOMAD-Ref: visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis. Nucleic Acids Res 34:W52–W56
doi: 10.1093/nar/gkl082
Yang LW, Rader AJ, Liu X, et al (2006) oGNM: online computation of structural dynamics using the gaussian network model. Nucleic Acids Res 34:W24–W31
Li H, Chang YY, Yang LW, et al (2016) iGNM 2.0: the Gaussian network model database for biomolecular structural dynamics. Nucleic Acids Res 44:D415–D422
Li H, Chang YY, Lee JY, et al (2017) DynOmics: dynamics of structural proteome and beyond. Nucleic Acids Res 45:W374–W380
Eyal E, Lum G, Bahar I (2015) The anisotropic network model web server at 2015 (ANM 2.0). Bioinformatics 31:1487–1489
doi: 10.1093/bioinformatics/btu847
Emekli U, Schneidman-Duhovny D, Wolfson HJ et al (2008) HingeProt: automated prediction of hinges in protein structures. Proteins 70:1219–1227
doi: 10.1002/prot.21613
Flores SC, Gerstein MB (2007) FlexOracle: predicting flexible hinges by identification of stable domains. BMC Bioinformatics 8:215
doi: 10.1186/1471-2105-8-215
López-Blanco JR, Aliaga JI, Quintana-Ortí ES et al (2014) iMODS: internal coordinates normal mode analysis server. Nucleic Acids Res 42:W271–W276
doi: 10.1093/nar/gku339
Tiwari SP, Fugelbakk E, Hollup SM et al (2014) WEBnm v2.0: Web server and services for comparing protein flexibility. BMC Bioinformatics 15:427
doi: 10.1186/s12859-014-0427-6
Bauer JA, Pavlović J, Bauerová-Hlinková V (2019) Normal mode analysis as a routine part of a structural investigation. Molecules 24:3293
doi: 10.3390/molecules24183293
Zheng W (2008) A unification of the elastic network model and the gaussian network model for optimal description of protein conformational motions and fluctuations. Biophys J 94:3853–3857
doi: 10.1529/biophysj.107.125831
Kondrashov DA, Van Wynsberghe AW, Bannen RM et al (2007) Protein structural variation in computational models and crystallographic data. Structure 15:169–177
doi: 10.1016/j.str.2006.12.006
Ming D, Wall ME (2005) Allostery in a coarse-grained model of protein dynamics. Phys Rev Lett 95:198103
doi: 10.1103/PhysRevLett.95.198103
Yang L, Song G, Jernigan RL (2009) Protein elastic network models and the ranges of cooperativity. Proc Natl Acad Sci USA 106:12347–12352
doi: 10.1073/pnas.0902159106
Sanejouand YH (1997) On the role of CD4 conformational change in the HIV-cell fusion process. Acad Sci Paris 320:163–170
Tama F, Sanejouand YH (2001) Conformational change of proteins arising from normal mode calculations. Protein Eng 14:1–6
doi: 10.1093/protein/14.1.1
Mahajan S, Sanejouand YH (2015) On the relationship between low-frequency normal modes and the large-scale conformational changes of proteins. Arch Biochem Biophys 567:59–65
doi: 10.1016/j.abb.2014.12.020
Ma J (2005) Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure 13:373–380
doi: 10.1016/j.str.2005.02.002
Genheden S, Kuhn O, Mikulskis P et al (2012) The normal-mode entropy in the MM/GBSA method: Effect of system truncation, buffer region, and dielectric constant. J Chem Inf Model 52:2079–2088
doi: 10.1021/ci3001919
Itoh K, Shimanouchi T (1970) Vibrational frequencies and modes of α-helix. Biopolymers 9:383–399
doi: 10.1002/bip.1970.360090402
Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the amber biomolecular simulation package. WIREs Comput Mol Sci 3:198–210
doi: 10.1002/wcms.1121
Abraham MJ, Murtola T, Schulz R et al (2015) GROMACS: high performance molecular simulations through parallelism from laptops to supercomputers. SoftwareX 1–2:19–25
doi: 10.1016/j.softx.2015.06.001
Brooks BR, Brooks CL III, Mackerell AD et al (2009) CHARMM: the biomolecular simulation program. J Comp Chem 30:1545–1615
doi: 10.1002/jcc.21287
Brüschweiler R (1995) Collective protein dynamics and nuclear spin relaxation. J Chem Phys 102:3396–3403
doi: 10.1063/1.469213

Auteurs

Jacob A Bauer (JA)

Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia. jacob.bauer@savba.sk.

Vladena Bauerová-Hlinková (V)

Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Databases, Protein Protein Domains Protein Folding Proteins Deep Learning

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software

Classifications MeSH