Self-regulated non-reciprocal motions in single-material microstructures.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
05 2022
05 2022
Historique:
received:
22
10
2020
accepted:
17
02
2022
entrez:
4
5
2022
pubmed:
5
5
2022
medline:
7
5
2022
Statut:
ppublish
Résumé
Living cilia stir, sweep and steer via swirling strokes of complex bending and twisting, paired with distinct reverse arcs
Identifiants
pubmed: 35508775
doi: 10.1038/s41586-022-04561-z
pii: 10.1038/s41586-022-04561-z
doi:
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
76-83Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Sleigh, M. A. The Biology of Cilia and Flagella (Pergamon Press, 1962).
Gilpin, W., Bull, M. S. & Prakash, M. The multiscale physics of cilia and flagella. Nat. Rev. Phys. 2, 74–88 (2020).
doi: 10.1038/s42254-019-0129-0
Hu, W., Lum, G. Z., Mastrangeli, M. & Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 81–85 (2018).
pubmed: 29364873
doi: 10.1038/nature25443
Van Oosten, C. L., Bastiaansen, C. W. M. & Broer, D. J. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat. Mater. 8, 677–682 (2009).
pubmed: 19561599
doi: 10.1038/nmat2487
Gu, H. et al. Magnetic cilia carpets with programmable metachronal waves. Nat. Commun. 11, 2637 (2020).
pubmed: 32457457
pmcid: 7250860
doi: 10.1038/s41467-020-16458-4
Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467–475 (2015).
pubmed: 26017446
doi: 10.1038/nature14543
Huang, H. W., Sakar, M. S., Petruska, A. J., Pané, S. & Nelson, B. J. Soft micromachines with programmable motility and morphology. Nat. Commun. 7, 12263 (2016).
pubmed: 27447088
pmcid: 5512624
doi: 10.1038/ncomms12263
Wu, Z. L. et al. Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nat. Commun. 4, 1586 (2013).
pubmed: 23481394
doi: 10.1038/ncomms2549
Tottori, S. et al. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv. Mater. 24, 811–816 (2012).
pubmed: 22213276
doi: 10.1002/adma.201103818
Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).
pubmed: 27558065
doi: 10.1038/nature19100
Yan, X. et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2, eaaq1155 (2017).
pubmed: 33157904
doi: 10.1126/scirobotics.aaq1155
Nelson, B. J., Kaliakatsos, I. K. & Abbott, J. J. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010).
pubmed: 20415589
doi: 10.1146/annurev-bioeng-010510-103409
Osada, Y. & Rossi, D. D. Polymer Sensors and Actuators (Springer, 2013).
Noorduin, W. L., Grinthal, A., Mahadevan, L. & Aizenberg, J. Rationally designed complex, hierarchical microarchitectures. Science 340, 832–837 (2013).
pubmed: 23687041
doi: 10.1126/science.1234621
Lerch, M. M., Grinthal, A. & Aizenberg, J. Viewpoint: homeostasis as inspiration—toward interactive materials. Adv. Mater. 32, 1905554 (2020).
doi: 10.1002/adma.201905554
Hippler, M. et al. Controlling the shape of 3D microstructures by temperature and light. Nat. Commun. 10, 232 (2019).
pubmed: 30651553
pmcid: 6335428
doi: 10.1038/s41467-018-08175-w
Lahikainen, M., Zeng, H. & Priimagi, A. Design principles for non-reciprocal photomechanical actuation. Soft Matter 16, 5951–5958 (2020).
pubmed: 32542246
doi: 10.1039/D0SM00624F
Kim, Y., Yuk, H., Zhao, R., Chester, S. A. & Zhao, X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558, 274–279 (2018).
pubmed: 29899476
doi: 10.1038/s41586-018-0185-0
Kotikian, A., Truby, R. L., Boley, J. W., White, T. J. & Lewis, J. A. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv. Mater. 30, 1706164 (2018).
doi: 10.1002/adma.201706164
Lahikainen, M., Zeng, H. & Priimagi, A. Reconfigurable photoactuator through synergistic use of photochemical and photothermal effects. Nat. Commun. 9, 4148 (2018).
pubmed: 30297774
pmcid: 6175871
doi: 10.1038/s41467-018-06647-7
Palagi, S. et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat. Mater. 15, 647–653 (2016).
pubmed: 26878315
doi: 10.1038/nmat4569
Yan, Z. et al. Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. Sci. Adv. 2, e1601014 (2016).
pubmed: 27679820
pmcid: 5035128
doi: 10.1126/sciadv.1601014
Zhang, H., Koens, L., Lauga, E., Mourran, A. & Möller, M. A light-driven microgel rotor. Small 15, 1903379 (2019).
doi: 10.1002/smll.201903379
Zhang, Y. et al. Seamless multimaterial 3D liquid-crystalline elastomer actuators for next-generation entirely soft robots. Sci. Adv. 6, eaay8606 (2020).
pubmed: 32158947
pmcid: 7048416
doi: 10.1126/sciadv.aay8606
Qian, X. et al. Artificial phototropism for omnidirectional tracking and harvesting of light. Nat. Nanotechnol. 14, 1048–1055 (2019).
pubmed: 31686005
doi: 10.1038/s41565-019-0562-3
Aizenberg, M., Okeyoshi, K. & Aizenberg, J. Inverting the swelling trends in modular self-oscillating gels crosslinked by redox-active metal bipyridine complexes. Adv. Funct. Mater. 28, 1704205 (2018).
doi: 10.1002/adfm.201704205
He, X. et al. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature 487, 214–218 (2012).
pubmed: 22785318
doi: 10.1038/nature11223
Gelebart, A. H. et al. Making waves in a photoactive polymer film. Nature 546, 632–636 (2017).
pubmed: 28658225
pmcid: 5495175
doi: 10.1038/nature22987
Serak, S. et al. Liquid crystalline polymer cantilever oscillators fueled by light. Soft Matter 6, 779–783 (2010).
doi: 10.1039/B916831A
Corbett, D. & Warner, M. Linear and nonlinear photoinduced deformations of cantilevers. Phys. Rev. Lett. 99, 174302 (2007).
pubmed: 17995335
doi: 10.1103/PhysRevLett.99.174302
Corbett, D., Van Oosten, C. L. & Warner, M. Nonlinear dynamics of optical absorption of intense beams. Phys. Rev. A 78, 013823 (2008).
doi: 10.1103/PhysRevA.78.013823
White, T. J. & Broer, D. J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 14, 1087–1098 (2015).
pubmed: 26490216
doi: 10.1038/nmat4433
Bisoyi, H. K. & Li, Q. Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications. Chem. Rev. 116, 15089–15166 (2016).
pubmed: 27936632
doi: 10.1021/acs.chemrev.6b00415
Buguin, A., Li, M. H., Silberzan, P., Ladoux, B. & Keller, P. Micro-actuators: when artificial muscles made of nematic liquid crystal elastomers meet soft lithography. J. Am. Chem. Soc. 128, 1088–1089 (2006).
pubmed: 16433520
doi: 10.1021/ja0575070
Yao, Y. et al. Multiresponsive polymeric microstructures with encoded predetermined and self-regulated deformability. Proc. Natl Acad. Sci. USA 115, 12950–12955 (2018).
pubmed: 30514819
pmcid: 6304948
doi: 10.1073/pnas.1811823115
Küpfer, J. & Finkelmann, H. Nematic liquid single crystal elastomers. Makromol. Chem. Rapid Commun. 12, 717–726 (1991).
doi: 10.1002/marc.1991.030121211
Liu, L. et al. Light tracking and light guiding fiber arrays by adjusting the location of photoresponsive azobenzene in liquid crystal networks. Adv. Opt. Mater. 8, 2000732 (2020).
doi: 10.1002/adom.202000732
Lin, X., Saed, M. O. & Terentjev, E. M. Continuous spinning aligned liquid crystal elastomer fibers with a 3D printer setup. Soft Matter 17, 5436–5443 (2021).
pubmed: 33970980
pmcid: 8170681
doi: 10.1039/D1SM00432H
Ware, T. H., McConney, M. E., Wie, J. J., Tondiglia, V. P. & White, T. J. Voxelated liquid crystal elastomers. Science 347, 982–984 (2015).
pubmed: 25722408
doi: 10.1126/science.1261019
Pilz Da Cunha, M., Van Thoor, E. A. J., Debije, M. G., Broer, D. J. & Schenning, A. P. H. J. Unravelling the photothermal and photomechanical contributions to actuation of azobenzene-doped liquid crystal polymers in air and water. J. Mater. Chem. C 7, 13502–13509 (2019).
doi: 10.1039/C9TC04440J
Barrett, C. J., Mamiya, J. I., Yager, K. G. & Ikeda, T. Photo-mechanical effects in azobenzene-containing soft materials. Soft Matter 3, 1249–1261 (2007).
pubmed: 32900091
doi: 10.1039/b705619b
Waters, J. T. et al. Twist again: dynamically and reversibly controllable chirality in liquid crystalline elastomer microposts. Sci. Adv. 6, eaay5349 (2020).
pubmed: 32258400
pmcid: 7101207
doi: 10.1126/sciadv.aay5349
Serra, F. & Terentjev, E. M. Effects of solvent viscosity and polarity on the isomerization of azobenzene. Macromolecules 41, 981–986 (2008).
doi: 10.1021/ma702033e
Erb, R. M., Sander, J. S., Grisch, R. & Studart, A. R. Self-shaping composites with programmable bioinspired microstructures. Nat. Commun. 4, 1712 (2013).
pubmed: 23591879
doi: 10.1038/ncomms2666
Sydney Gladman, A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016).
pubmed: 26808461
doi: 10.1038/nmat4544
Karothu, D. P. et al. The rise of the dynamic crystals. J. Am. Chem. Soc. 31, 13256–13272 (2020).
Kaspar, C., Ravoo, B. J., van der Wiel, W. G., Wegner, S. V. & Pernice, W. H. P. The rise of intelligent matter. Nature 594, 345–355 (2021).
pubmed: 34135518
doi: 10.1038/s41586-021-03453-y
Turiv, T. et al. Topology control of human fibroblast cells monolayer by liquid crystal elastomer. Sci. Adv. 6, p.eaaz6485 (2020).
doi: 10.1126/sciadv.aaz6485
Hauser, A. W., Sundaram, S. & Hayward, R. C. Photothermocapillary oscillators. Phys. Rev. Lett. 121, 158001 (2018).
pubmed: 30362782
doi: 10.1103/PhysRevLett.121.158001
Babu, D. et al. Acceleration of lipid reproduction by emergence of microscopic motion. Nat. Commun. 12, 2959 (2021).
pubmed: 34011926
pmcid: 8134444
doi: 10.1038/s41467-021-23022-1