A low-cost 3D-printable differential scanning fluorometer for protein and RNA melting experiments.
Biophysical chemistry
Differential scanning fluorimetry
ESP32
Protein melting point
Thermal shift assay
Journal
HardwareX
ISSN: 2468-0672
Titre abrégé: HardwareX
Pays: England
ID NLM: 101710262
Informations de publication
Date de publication:
Apr 2022
Apr 2022
Historique:
received:
26
10
2021
revised:
02
12
2021
accepted:
01
01
2022
entrez:
5
5
2022
pubmed:
6
5
2022
medline:
6
5
2022
Statut:
epublish
Résumé
Differential scanning fluorimetry (DSF) is a widely used biophysical technique with applications to drug discovery and protein biochemistry. DSF experiments are commonly performed in commercial real-time polymerase chain reaction (qPCR) thermal cyclers or nanoDSF instruments. Here, we report the construction, validation, and example applications of an open-source DSF system for 176 €, which, in addition to protein-DSF experiments, also proved to be a versatile biophysical instrument for less conventional RNA-DSF experiments. Using 3D-printed parts made of polyoxymethylene, we were able to fabricate a thermostable machine chassis for protein-melting experiments. The combination of blue high-power LEDs as the light source and stage light foil as filter components was proven to be a reliable and affordable alternative to conventional optics equipment for the detection of SYPRO Orange or Sybr Gold fluorescence. The ESP32 microcontroller is the core piece of this openDSF instrument, while the in-built I
Identifiants
pubmed: 35509940
doi: 10.1016/j.ohx.2022.e00256
pii: S2468-0672(22)00001-3
pmc: PMC9058602
doi:
Types de publication
Journal Article
Langues
eng
Pagination
e00256Informations de copyright
© 2022 The Author(s).
Déclaration de conflit d'intérêts
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Références
PLoS One. 2017 Jun 6;12(6):e0179133
pubmed: 28586401
Chembiochem. 2015 May 4;16(7):1109-14
pubmed: 25867500
Mol Inform. 2021 Jan;40(1):e2000144
pubmed: 32830452
ChemMedChem. 2020 Aug 5;15(15):1439-1452
pubmed: 32501637
J Vis Exp. 2014 Sep 13;(91):51809
pubmed: 25285605
Protein Sci. 2020 Jan;29(1):19-27
pubmed: 31394001
Mol Pharm. 2020 Jul 6;17(7):2638-2647
pubmed: 32401526
Sci Rep. 2018 Jan 23;8(1):1457
pubmed: 29362420
PLoS One. 2018 Oct 15;13(10):e0205057
pubmed: 30321208
Bioorg Chem. 2020 Aug;101:104039
pubmed: 32629285
J Mol Biol. 2004 Nov 5;343(5):1313-26
pubmed: 15491615
J Biomol Screen. 2001 Dec;6(6):429-40
pubmed: 11788061
Comb Chem High Throughput Screen. 2008 Jan;11(1):16-23
pubmed: 18220540
Sci Rep. 2018 Nov 6;8(1):16371
pubmed: 30401805
Cell Res. 2020 Aug;30(8):678-692
pubmed: 32541865
Cell. 2002 Mar 8;108(5):649-60
pubmed: 11893336
Biophys Rev. 2020 Feb;12(1):85-104
pubmed: 32006251
Anal Chem. 2018 May 1;90(9):5563-5568
pubmed: 29624373
SLAS Technol. 2020 Apr;25(2):190-199
pubmed: 31540570
FEBS Lett. 2019 Aug;593(16):2204-2213
pubmed: 31240714
J Med Chem. 2021 Jun 10;64(11):7110-7155
pubmed: 34060847
J Biol Chem. 2004 Feb 13;279(7):6106-14
pubmed: 14581465
ChemMedChem. 2020 May 19;15(10):839-850
pubmed: 32118357
J Phys Chem Lett. 2017 Feb 2;8(3):553-558
pubmed: 28067526
Nat Protoc. 2007;2(9):2212-21
pubmed: 17853878
Methods Enzymol. 1995;259:281-305
pubmed: 8538459
Anal Biochem. 1997 May 15;248(1):168-72
pubmed: 9177736
Sci Rep. 2019 Feb 25;9(1):2650
pubmed: 30804351
Structure. 2017 Aug 1;25(8):1242-1250.e3
pubmed: 28689970
J Biomol Screen. 2015 Aug;20(7):898-905
pubmed: 25918038
Anal Biochem. 2004 Sep 1;332(1):153-9
pubmed: 15301960
Biochim Biophys Acta Gen Subj. 2021 Feb;1865(2):129805
pubmed: 33276061
Antiviral Res. 2017 Jun;142:141-147
pubmed: 28336347